Datasets:

Modalities:
Text
Languages:
English
Libraries:
Datasets
License:
wiki_toxic / clean.py
LouisThomson's picture
Changed output eval.py to evaluation.py
7083d01
raw
history blame
4.88 kB
import re
import math
import pandas as pd
from tqdm import tqdm
seed = 7497
TOXIC_COLUMNS = [
"toxic",
"severe_toxic",
"obscene",
"threat",
"insult",
"identity_hate",
]
# Time and date regexes
TIME = r"([0-9]{1,2}:[0-9]{2}( (am|AM|pm|PM))?)"
DAY = r"([23]?(1(st)?|2(nd)?|3(rd)?|[4-9](th)?)|1[0-9](th)?)"
MONTH = r"(January|February|March|April|May|June|July|August|September|October|November|December|Jan|Feb|Mar|Apr|May|Jun|Jul|Aug|Sep|Nov|Dec)"
YEAR = r"('?[0-9]{2}|[0-9]{4})"
DATE = rf"(({DAY} {MONTH}|{MONTH} {DAY})(,? {YEAR})?)"
TIMESTAMP = rf"((({TIME},? (\(UTC\) )?)?{DATE}|({DATE},? )?{TIME})(\s+\(UTC\))?)"
# The 'talk' part at the end of a signature
TALK = r"((\|\s*|\(\s*)?[tT]alk((\s*[-|β€’, ]\s*|\s+)[cC]ontribs)?(\s*[-|)])?)"
# IP addresses
IP = r"([0-9]{1,3}\.[0-9]{1,3}\.[0-9]{1,3}\.[0-9]{1,3})"
# Username and the username part of a the signature
USERNAME = r"([^#<>[\]|{}/@\s]+)"
USER_SIG = rf"((((?:\s)[-–—]\s*)?(\((User:)?{USERNAME}\)|User:{USERNAME})|(?:\s)[-–—]\s*{USERNAME})(\s+{TALK})?)"
# A full signature
SIGNATURE = rf"(((([-–—]\s*)?{IP}(\s+{USER_SIG})?|(?:\s)[-–—]\s*[uU]nsigned|{TALK}|{USER_SIG})(\s+{TIMESTAMP})?)|{TIMESTAMP}(\s+{TALK})?)"
# List of the patterns to remove
REGEX_REMOVE = [
r"^(\"+|'+)", # Initial quotation marks
r"(\"+|'+)$", # Final quotation marks
r"^REDIRECT.*$", # The whole comment is a redirect
rf"^\s*{SIGNATURE}", # Initial signature
rf"{SIGNATURE}\s*$", # Final signature
r" \[[0-9]+\]|\[[0-9]+\] ", # Citations
r"β€–\s+[tT]alk - [-a-zA-Z0-9._()\s]+β€–",
r"==[^=]+==",
r"^::+",
r"^\s*\(UTC\)",
rf"Unblock {IP}",
r"2nd Unblock Request",
r":Category:",
r"File:[^\s]+",
r"\{\|.+\|\}", # Embedded code
# r"\{\{.+\s.+\}\}", # Embedded code
r"^\s+", # Initial whitespace
r"\s+$", # Trailing whitespace
]
# List of patterns to replaces
REGEX_REPLACE = {
"\n+": "\n",
"\\'": "'",
'""+': '"',
"''+": "'",
# r"(WP|Wikipedia):[^\s]+": "URL", # Wikipedia internal links
r"[^\s]+#[^\s]+": "URL", # Wikipedia internal links
r"https?:\/\/(www\.)?[-a-zA-Z0-9@:%._\+~#=]{2,256}\.[a-z]{2,4}\b([-a-zA-Z0-9@:%_\+.~#?&//=]*)": "URL", # ULRs
r"([uU]ser_[tT]alk|[tT]alk):[^\s]+": "URL", # Talk links
}
def clean_sentence(sentence):
"""Preprocess a sentence using the regex rules"""
for pattern in REGEX_REMOVE:
sentence = re.sub(pattern, "", sentence)
for pattern, repl in REGEX_REPLACE.items():
sentence = re.sub(pattern, repl, sentence)
return sentence
def make_binary_label(row):
"""Make a row label binary by combining all toxicity types"""
for column in TOXIC_COLUMNS:
if row[column] == 1:
return 1
return 0
print("Loading original data...")
# Load up the original data
train_df = pd.read_csv("orig_train.csv").set_index("id")
test_text_df = pd.read_csv("orig_test.csv").set_index("id")
test_labels_df = pd.read_csv("orig_test_labels.csv").set_index("id")
# Remove the datapoints which have no label
test_text_df = test_text_df.loc[test_labels_df["toxic"] != -1]
test_labels_df = test_labels_df.loc[test_labels_df["toxic"] != -1]
# Join the test text and labels to make a complete dataset
test_df = test_text_df.join(test_labels_df)
print("Cleaning train split...")
for index, row in tqdm(train_df.iterrows(), total=len(train_df)):
row["comment_text"] = clean_sentence(row["comment_text"])
print("Cleaning test split...")
for index, row in tqdm(test_df.iterrows(), total=len(test_df)):
row["comment_text"] = clean_sentence(row["comment_text"])
# Some texts will get reduced to the empty string. Let's remove them first
print("Removing empty texts...")
train_df = train_df.loc[train_df["comment_text"] != ""]
test_df = test_df.loc[test_df["comment_text"] != ""]
# Get rid of any duplicates we made
print("Removing duplicate entries...")
train_df = train_df.drop_duplicates(subset=["comment_text"])
test_df = test_df.drop_duplicates(subset=["comment_text"])
print("Creating binary column...")
# Make the new binary column
train_df["label"] = train_df.apply(make_binary_label, axis=1)
test_df["label"] = test_df.apply(make_binary_label, axis=1)
# Remove all other classification columns
train_df = train_df.drop(columns=TOXIC_COLUMNS)
test_df = test_df.drop(columns=TOXIC_COLUMNS)
print("Creating eval split...")
# Shuffle the current train split
train_df = train_df.sample(frac=1, random_state=seed)
# The new size of the train split
train_size = math.floor(len(train_df) * 0.8)
# Separate into train and eval splits
eval_df = train_df[train_size:]
train_df = train_df[:train_size]
# print("Saving to disk...")
with open("train.csv", "w") as f:
train_df.to_csv(f)
with open("evaluation.csv", "w") as f:
eval_df.to_csv(f)
with open("test.csv", "w") as f:
test_df.to_csv(f)