|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
import os |
|
import io |
|
import datasets |
|
import pickle |
|
import logging |
|
|
|
|
|
LABEL_NAME = 'label' |
|
numbers = { |
|
1: "first", |
|
2: "second", |
|
3: "third", |
|
4: "fourth", |
|
5: "fifth", |
|
6: "sixth", |
|
7: "seventh", |
|
8: "eighth", |
|
9: "ninth" |
|
|
|
} |
|
TEXT_COLUMN_NAME = [f"{numbers[i]}_sentence" for i in range(1, 10)] |
|
|
|
|
|
SSPABS = 'SSPabs' |
|
SSPABS_TRAIN_NAME = 'train.txt' |
|
SSPABS_VALID_NAME = 'valid.txt' |
|
SSPABS_TEST_NAME = 'test.txt' |
|
SSPABS_DATA_DIR = 'data/SSP/abs' |
|
SSPABS_LABELS = { |
|
"0": "Does not belong to abstract", |
|
"1": "Belongs to abstract", |
|
} |
|
SSPABS_TEXT_COLUMNS = 1 |
|
|
|
|
|
PDTB_I = 'PDTB_I' |
|
PDTB_E = 'PDTB_E' |
|
PDTB_TRAIN_NAME = 'train.txt' |
|
PDTB_VALID_NAME = 'valid.txt' |
|
PDTB_TEST_NAME = 'test.txt' |
|
PDTB_DATA_DIR = 'data/PDTB' |
|
PDTB_DIRS = {PDTB_E: 'Explicit', PDTB_I: 'Implicit'} |
|
PDTB_E_LABELS = [ |
|
'Comparison.Concession', |
|
'Comparison.Contrast', |
|
'Contingency.Cause', |
|
'Contingency.Condition', |
|
'Contingency.Pragmatic condition', |
|
'Expansion.Alternative', |
|
'Expansion.Conjunction', |
|
'Expansion.Instantiation', |
|
'Expansion.List', |
|
'Expansion.Restatement', |
|
'Temporal.Asynchronous', |
|
'Temporal.Synchrony', |
|
] |
|
PDTB_E_LABELS = {str(i): label for i, label in enumerate(PDTB_E_LABELS)} |
|
PDTB_I_LABELS = [ |
|
'Comparison.Concession', |
|
'Comparison.Contrast', |
|
'Contingency.Cause', |
|
'Contingency.Pragmatic cause', |
|
'Expansion.Alternative', |
|
'Expansion.Conjunction', |
|
'Expansion.Instantiation', |
|
'Expansion.List', |
|
'Expansion.Restatement', |
|
'Temporal.Asynchronous', |
|
'Temporal.Synchrony', |
|
] |
|
PDTB_I_LABELS = {str(i): label for i, label in enumerate(PDTB_I_LABELS)} |
|
PDTB_E_TEXT_COLUMNS = 2 |
|
PDTB_I_TEXT_COLUMNS = 2 |
|
|
|
|
|
SPARXIV = 'SParxiv' |
|
SPROCSTORY = 'SProcstory' |
|
SPWIKI = 'SPwiki' |
|
SP_TRAIN_NAME = 'train.txt' |
|
SP_VALID_NAME = 'valid.txt' |
|
SP_TEST_NAME = 'test.txt' |
|
SP_DATA_DIR = 'data/SP' |
|
SP_DIRS = {SPARXIV: 'arxiv', SPROCSTORY: 'rocstory', SPWIKI: 'wiki'} |
|
SP_LABELS = { |
|
"0": 'First sentence', |
|
"1": 'Second sentence', |
|
"2": 'Third sentence', |
|
"3": "Fourth sentence", |
|
"4": "Fifth sentence", |
|
} |
|
SP_TEXT_COLUMNS = 5 |
|
|
|
|
|
BSOARXIV = 'BSOarxiv' |
|
BSOROCSTORY = 'BSOrocstory' |
|
BSOWIKI = 'BSOwiki' |
|
BSO_TRAIN_NAME = 'train.txt' |
|
BSO_VALID_NAME = 'valid.txt' |
|
BSO_TEST_NAME = 'test.txt' |
|
BSO_DATA_DIR = 'data/BSO' |
|
BSO_DIRS = {BSOARXIV: 'arxiv', BSOROCSTORY: 'rocstory', BSOWIKI: 'wiki'} |
|
BSO_LABELS = { |
|
"0": 'Incorrect order', |
|
"1": 'Correct order', |
|
} |
|
BSO_TEXT_COLUMNS = 2 |
|
|
|
|
|
DCCHAT = 'DCchat' |
|
DCWIKI = 'DCwiki' |
|
DC_TRAIN_NAME = 'train.txt' |
|
DC_VALID_NAME = 'valid.txt' |
|
DC_TEST_NAME = 'test.txt' |
|
DC_DATA_DIR = 'data/DC' |
|
DC_DIRS = {DCCHAT: 'chat', DCWIKI: 'wiki'} |
|
DC_LABELS = { |
|
"0": "Incoherent", |
|
"1": "Coherent", |
|
} |
|
DC_TEXT_COLUMNS = 6 |
|
|
|
|
|
RST = 'RST' |
|
RST_TRAIN_NAME = 'RST_TRAIN.pkl' |
|
RST_VALID_NAME = 'RST_DEV.pkl' |
|
RST_TEST_NAME = 'RST_TEST.pkl' |
|
RST_DATA_DIR = 'data/RST' |
|
RST_LABELS = [ |
|
'NS-Explanation', |
|
'NS-Evaluation', |
|
'NN-Condition', |
|
'NS-Summary', |
|
'SN-Cause', |
|
'SN-Background', |
|
'NS-Background', |
|
'SN-Summary', |
|
'NS-Topic-Change', |
|
'NN-Explanation', |
|
'SN-Topic-Comment', |
|
'NS-Elaboration', |
|
'SN-Attribution', |
|
'SN-Manner-Means', |
|
'NN-Evaluation', |
|
'NS-Comparison', |
|
'NS-Contrast', |
|
'SN-Condition', |
|
'NS-Temporal', |
|
'NS-Enablement', |
|
'SN-Evaluation', |
|
'NN-Topic-Comment', |
|
'NN-Temporal', |
|
'NN-Textual-organization', |
|
'NN-Same-unit', |
|
'NN-Comparison', |
|
'NN-Topic-Change', |
|
'SN-Temporal', |
|
'NN-Joint', |
|
'SN-Enablement', |
|
'SN-Explanation', |
|
'NN-Contrast', |
|
'NN-Cause', |
|
'SN-Contrast', |
|
'NS-Attribution', |
|
'NS-Topic-Comment', |
|
'SN-Elaboration', |
|
'SN-Comparison', |
|
'NS-Cause', |
|
'NS-Condition', |
|
'NS-Manner-Means' |
|
] |
|
RST_TEXT_COLUMNS = 2 |
|
|
|
DATASET_NAMES = [ |
|
SSPABS, |
|
PDTB_I, |
|
PDTB_E, |
|
SPARXIV, |
|
SPROCSTORY, |
|
SPWIKI, |
|
BSOARXIV, |
|
BSOROCSTORY, |
|
BSOWIKI, |
|
DCCHAT, |
|
DCWIKI, |
|
RST, |
|
] |
|
|
|
|
|
|
|
_CITATION = """\ |
|
@InProceedings{mchen-discoeval-19, |
|
title = {Evaluation Benchmarks and Learning Criteria for Discourse-Aware Sentence Representations}, |
|
author = {Mingda Chen and Zewei Chu and Kevin Gimpel}, |
|
booktitle = {Proc. of {EMNLP}}, |
|
year={2019} |
|
} |
|
""" |
|
|
|
_DESCRIPTION = """\ |
|
This dataset contains all tasks of the DiscoEval benchmark for sentence representation learning. |
|
""" |
|
|
|
_HOMEPAGE = "https://github.com/ZeweiChu/DiscoEval" |
|
|
|
|
|
class DiscoEvalSentence(datasets.GeneratorBasedBuilder): |
|
"""DiscoEval Benchmark""" |
|
VERSION = datasets.Version("1.1.0") |
|
BUILDER_CONFIGS = [ |
|
datasets.BuilderConfig( |
|
name=SPARXIV, |
|
version=VERSION, |
|
description="Sentence positioning dataset from arXiv", |
|
), |
|
datasets.BuilderConfig( |
|
name=SPROCSTORY, |
|
version=VERSION, |
|
description="Sentence positioning dataset from ROCStory", |
|
), |
|
datasets.BuilderConfig( |
|
name=SPWIKI, |
|
version=VERSION, |
|
description="Sentence positioning dataset from Wikipedia", |
|
), |
|
datasets.BuilderConfig( |
|
name=DCCHAT, |
|
version=VERSION, |
|
description="Discourse Coherence dataset from chat", |
|
), |
|
datasets.BuilderConfig( |
|
name=DCWIKI, |
|
version=VERSION, |
|
description="Discourse Coherence dataset from Wikipedia", |
|
), |
|
datasets.BuilderConfig( |
|
name=RST, |
|
version=VERSION, |
|
description="The RST Discourse Treebank dataset ", |
|
), |
|
datasets.BuilderConfig( |
|
name=PDTB_E, |
|
version=VERSION, |
|
description="The Penn Discourse Treebank - Explicit dataset.", |
|
), |
|
datasets.BuilderConfig( |
|
name=PDTB_I, |
|
version=VERSION, |
|
description="The Penn Discourse Treebank - Implicit dataset.", |
|
), |
|
datasets.BuilderConfig( |
|
name=SSPABS, |
|
version=VERSION, |
|
description="The SSP dataset.", |
|
), |
|
datasets.BuilderConfig( |
|
name=BSOARXIV, |
|
version=VERSION, |
|
description="The BSO Task with the arxiv dataset.", |
|
), |
|
datasets.BuilderConfig( |
|
name=BSOWIKI, |
|
version=VERSION, |
|
description="The BSO Task with the wiki dataset.", |
|
), |
|
datasets.BuilderConfig( |
|
name=BSOROCSTORY, |
|
version=VERSION, |
|
description="The BSO Task with the rocstory dataset.", |
|
), |
|
] |
|
|
|
def _info(self): |
|
if self.config.name in [SPARXIV, SPROCSTORY, SPWIKI]: |
|
features_dict = { |
|
TEXT_COLUMN_NAME[i]: datasets.Value('string') |
|
for i in range(SP_TEXT_COLUMNS) |
|
} |
|
features_dict[LABEL_NAME] = datasets.ClassLabel( |
|
names=list(SP_LABELS.values()), |
|
) |
|
features = datasets.Features(features_dict) |
|
|
|
elif self.config.name in [BSOARXIV, BSOWIKI, BSOROCSTORY]: |
|
features_dict = { |
|
TEXT_COLUMN_NAME[i]: datasets.Value('string') |
|
for i in range(BSO_TEXT_COLUMNS) |
|
} |
|
features_dict[LABEL_NAME] = datasets.ClassLabel( |
|
names=list(BSO_LABELS.values()) |
|
) |
|
features = datasets.Features(features_dict) |
|
|
|
elif self.config.name in [DCCHAT, DCWIKI]: |
|
features_dict = { |
|
TEXT_COLUMN_NAME[i]: datasets.Value('string') |
|
for i in range(DC_TEXT_COLUMNS) |
|
} |
|
features_dict[LABEL_NAME] = datasets.ClassLabel( |
|
names=list(DC_LABELS.values()) |
|
) |
|
features = datasets.Features(features_dict) |
|
|
|
elif self.config.name in [RST]: |
|
features_dict = { |
|
TEXT_COLUMN_NAME[i]: [datasets.Value('string')] |
|
for i in range(RST_TEXT_COLUMNS) |
|
} |
|
features_dict[LABEL_NAME] = datasets.ClassLabel( |
|
names=RST_LABELS |
|
) |
|
features = datasets.Features(features_dict) |
|
|
|
elif self.config.name in [PDTB_E]: |
|
features_dict = { |
|
TEXT_COLUMN_NAME[i]: datasets.Value('string') |
|
for i in range(PDTB_E_TEXT_COLUMNS) |
|
} |
|
features_dict[LABEL_NAME] = datasets.ClassLabel( |
|
names=list(PDTB_E_LABELS.values()) |
|
) |
|
features = datasets.Features(features_dict) |
|
|
|
elif self.config.name in [PDTB_I]: |
|
features_dict = { |
|
TEXT_COLUMN_NAME[i]: datasets.Value('string') |
|
for i in range(PDTB_I_TEXT_COLUMNS) |
|
} |
|
features_dict[LABEL_NAME] = datasets.ClassLabel( |
|
names=list(PDTB_I_LABELS.values()) |
|
) |
|
features = datasets.Features(features_dict) |
|
|
|
elif self.config.name in [SSPABS]: |
|
features_dict = { |
|
TEXT_COLUMN_NAME[i]: datasets.Value('string') |
|
for i in range(SSPABS_TEXT_COLUMNS) |
|
} |
|
features_dict[LABEL_NAME] = datasets.ClassLabel( |
|
names=list(SSPABS_LABELS.values()) |
|
) |
|
features = datasets.Features(features_dict) |
|
|
|
return datasets.DatasetInfo( |
|
description=_DESCRIPTION, |
|
features=features, |
|
homepage=_HOMEPAGE, |
|
citation=_CITATION, |
|
) |
|
|
|
def _split_generators(self, dl_manager): |
|
if self.config.name in [SPARXIV, SPROCSTORY, SPWIKI]: |
|
data_dir = SP_DATA_DIR + "/" + SP_DIRS[self.config.name] |
|
train_name = SP_TRAIN_NAME |
|
valid_name = SP_VALID_NAME |
|
test_name = SP_TEST_NAME |
|
|
|
elif self.config.name in [BSOARXIV, BSOWIKI, BSOROCSTORY]: |
|
data_dir = BSO_DATA_DIR + "/" + BSO_DIRS[self.config.name] |
|
train_name = BSO_TRAIN_NAME |
|
valid_name = BSO_VALID_NAME |
|
test_name = BSO_TEST_NAME |
|
|
|
elif self.config.name in [DCCHAT, DCWIKI]: |
|
data_dir = DC_DATA_DIR + "/" + DC_DIRS[self.config.name] |
|
train_name = DC_TRAIN_NAME |
|
valid_name = DC_VALID_NAME |
|
test_name = DC_TEST_NAME |
|
|
|
elif self.config.name in [RST]: |
|
data_dir = RST_DATA_DIR |
|
train_name = RST_TRAIN_NAME |
|
valid_name = RST_VALID_NAME |
|
test_name = RST_TEST_NAME |
|
|
|
elif self.config.name in [PDTB_E, PDTB_I]: |
|
data_dir = os.path.join(PDTB_DATA_DIR, PDTB_DIRS[self.config.name]) |
|
train_name = PDTB_TRAIN_NAME |
|
valid_name = PDTB_VALID_NAME |
|
test_name = PDTB_TEST_NAME |
|
|
|
elif self.config.name in [SSPABS]: |
|
data_dir = SSPABS_DATA_DIR |
|
train_name = SSPABS_TRAIN_NAME |
|
valid_name = SSPABS_VALID_NAME |
|
test_name = SSPABS_TEST_NAME |
|
|
|
urls_to_download = { |
|
"train": data_dir + "/" + train_name, |
|
"valid": data_dir + "/" + valid_name, |
|
"test": data_dir + "/" + test_name, |
|
} |
|
logger = logging.getLogger(__name__) |
|
data_dirs = dl_manager.download_and_extract(urls_to_download) |
|
logger.info(f"Data directories: {data_dirs}") |
|
downloaded_files = dl_manager.download_and_extract(data_dirs) |
|
logger.info(f"Downloading Completed") |
|
|
|
return [ |
|
datasets.SplitGenerator( |
|
name=datasets.Split.TRAIN, |
|
gen_kwargs={ |
|
"filepath": downloaded_files['train'], |
|
"split": "train", |
|
}, |
|
), |
|
datasets.SplitGenerator( |
|
name=datasets.Split.VALIDATION, |
|
gen_kwargs={ |
|
"filepath": downloaded_files['valid'], |
|
"split": "dev", |
|
}, |
|
), |
|
datasets.SplitGenerator( |
|
name=datasets.Split.TEST, |
|
gen_kwargs={ |
|
"filepath": downloaded_files['test'], |
|
"split": "test" |
|
}, |
|
), |
|
] |
|
|
|
def _generate_examples(self, filepath, split): |
|
logger = logging.getLogger(__name__) |
|
logger.info(f"Current working dir: {os.getcwd()}") |
|
logger.info("generating examples from = %s", filepath) |
|
if self.config.name == RST: |
|
data = pickle.load(open(filepath, "rb")) |
|
for key, line in enumerate(data): |
|
example = {TEXT_COLUMN_NAME[i]: sent for i, sent in enumerate(line[1:])} |
|
example[LABEL_NAME] = line[0] |
|
yield key, example |
|
|
|
else: |
|
with io.open(filepath, mode='r', encoding='utf-8') as f: |
|
for key, line in enumerate(f): |
|
line = line.strip().split("\t") |
|
example = {TEXT_COLUMN_NAME[i]: sent for i, sent in enumerate(line[1:])} |
|
if self.config.name == PDTB_E: |
|
example[LABEL_NAME] = PDTB_E_LABELS[line[0]] |
|
if self.config.name == PDTB_I: |
|
example[LABEL_NAME] = PDTB_I_LABELS[line[0]] |
|
elif self.config.name in (DCCHAT, DCWIKI): |
|
example[LABEL_NAME] = DC_LABELS[line[0]] |
|
elif self.config.name == SSPABS: |
|
example[LABEL_NAME] = SSPABS_LABELS[line[0]] |
|
elif self.config.name in (SPWIKI, SPROCSTORY, SPARXIV): |
|
example[LABEL_NAME] = SP_LABELS[line[0]] |
|
elif self.config.name in (BSOARXIV, BSOWIKI, BSOROCSTORY): |
|
example[LABEL_NAME] = BSO_LABELS[line[0]] |
|
yield key, example |
|
|