DiscoEval / DiscoEval.py
OfekGlick's picture
Upload DiscoEval.py
b403b4a
# Copyright 2020 The HuggingFace Datasets Authors and the current dataset script contributor.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import os
import io
import datasets
import pickle
import logging
# General Constants:
LABEL_NAME = 'label'
numbers = {
1: "first",
2: "second",
3: "third",
4: "fourth",
5: "fifth",
6: "sixth",
7: "seventh",
8: "eighth",
9: "ninth"
}
TEXT_COLUMN_NAME = [f"{numbers[i]}_sentence" for i in range(1, 10)]
# SSPabs Constants:
SSPABS = 'SSPabs'
SSPABS_TRAIN_NAME = 'train.txt'
SSPABS_VALID_NAME = 'valid.txt'
SSPABS_TEST_NAME = 'test.txt'
SSPABS_DATA_DIR = 'data/SSP/abs'
SSPABS_LABELS = {
"0": "Does not belong to abstract",
"1": "Belongs to abstract",
}
SSPABS_TEXT_COLUMNS = 1
# PDTB Constants:
PDTB_I = 'PDTB_I'
PDTB_E = 'PDTB_E'
PDTB_TRAIN_NAME = 'train.txt'
PDTB_VALID_NAME = 'valid.txt'
PDTB_TEST_NAME = 'test.txt'
PDTB_DATA_DIR = 'data/PDTB'
PDTB_DIRS = {PDTB_E: 'Explicit', PDTB_I: 'Implicit'}
PDTB_E_LABELS = [
'Comparison.Concession',
'Comparison.Contrast',
'Contingency.Cause',
'Contingency.Condition',
'Contingency.Pragmatic condition',
'Expansion.Alternative',
'Expansion.Conjunction',
'Expansion.Instantiation',
'Expansion.List',
'Expansion.Restatement',
'Temporal.Asynchronous',
'Temporal.Synchrony',
]
PDTB_E_LABELS = {str(i): label for i, label in enumerate(PDTB_E_LABELS)}
PDTB_I_LABELS = [
'Comparison.Concession',
'Comparison.Contrast',
'Contingency.Cause',
'Contingency.Pragmatic cause',
'Expansion.Alternative',
'Expansion.Conjunction',
'Expansion.Instantiation',
'Expansion.List',
'Expansion.Restatement',
'Temporal.Asynchronous',
'Temporal.Synchrony',
]
PDTB_I_LABELS = {str(i): label for i, label in enumerate(PDTB_I_LABELS)}
PDTB_E_TEXT_COLUMNS = 2
PDTB_I_TEXT_COLUMNS = 2
# SP Constants:
SPARXIV = 'SParxiv'
SPROCSTORY = 'SProcstory'
SPWIKI = 'SPwiki'
SP_TRAIN_NAME = 'train.txt'
SP_VALID_NAME = 'valid.txt'
SP_TEST_NAME = 'test.txt'
SP_DATA_DIR = 'data/SP'
SP_DIRS = {SPARXIV: 'arxiv', SPROCSTORY: 'rocstory', SPWIKI: 'wiki'}
SP_LABELS = {
"0": 'First sentence',
"1": 'Second sentence',
"2": 'Third sentence',
"3": "Fourth sentence",
"4": "Fifth sentence",
}
SP_TEXT_COLUMNS = 5
# BSO Constants:
BSOARXIV = 'BSOarxiv'
BSOROCSTORY = 'BSOrocstory'
BSOWIKI = 'BSOwiki'
BSO_TRAIN_NAME = 'train.txt'
BSO_VALID_NAME = 'valid.txt'
BSO_TEST_NAME = 'test.txt'
BSO_DATA_DIR = 'data/BSO'
BSO_DIRS = {BSOARXIV: 'arxiv', BSOROCSTORY: 'rocstory', BSOWIKI: 'wiki'}
BSO_LABELS = {
"0": 'Incorrect order',
"1": 'Correct order',
}
BSO_TEXT_COLUMNS = 2
# DC Constants:
DCCHAT = 'DCchat'
DCWIKI = 'DCwiki'
DC_TRAIN_NAME = 'train.txt'
DC_VALID_NAME = 'valid.txt'
DC_TEST_NAME = 'test.txt'
DC_DATA_DIR = 'data/DC'
DC_DIRS = {DCCHAT: 'chat', DCWIKI: 'wiki'}
DC_LABELS = {
"0": "Incoherent",
"1": "Coherent",
}
DC_TEXT_COLUMNS = 6
# RST Constants:
RST = 'RST'
RST_TRAIN_NAME = 'RST_TRAIN.pkl'
RST_VALID_NAME = 'RST_DEV.pkl'
RST_TEST_NAME = 'RST_TEST.pkl'
RST_DATA_DIR = 'data/RST'
RST_LABELS = [
'NS-Explanation',
'NS-Evaluation',
'NN-Condition',
'NS-Summary',
'SN-Cause',
'SN-Background',
'NS-Background',
'SN-Summary',
'NS-Topic-Change',
'NN-Explanation',
'SN-Topic-Comment',
'NS-Elaboration',
'SN-Attribution',
'SN-Manner-Means',
'NN-Evaluation',
'NS-Comparison',
'NS-Contrast',
'SN-Condition',
'NS-Temporal',
'NS-Enablement',
'SN-Evaluation',
'NN-Topic-Comment',
'NN-Temporal',
'NN-Textual-organization',
'NN-Same-unit',
'NN-Comparison',
'NN-Topic-Change',
'SN-Temporal',
'NN-Joint',
'SN-Enablement',
'SN-Explanation',
'NN-Contrast',
'NN-Cause',
'SN-Contrast',
'NS-Attribution',
'NS-Topic-Comment',
'SN-Elaboration',
'SN-Comparison',
'NS-Cause',
'NS-Condition',
'NS-Manner-Means'
]
RST_TEXT_COLUMNS = 2
DATASET_NAMES = [
SSPABS,
PDTB_I,
PDTB_E,
SPARXIV,
SPROCSTORY,
SPWIKI,
BSOARXIV,
BSOROCSTORY,
BSOWIKI,
DCCHAT,
DCWIKI,
RST,
]
_CITATION = """\
@InProceedings{mchen-discoeval-19,
title = {Evaluation Benchmarks and Learning Criteria for Discourse-Aware Sentence Representations},
author = {Mingda Chen and Zewei Chu and Kevin Gimpel},
booktitle = {Proc. of {EMNLP}},
year={2019}
}
"""
_DESCRIPTION = """\
This dataset contains all tasks of the DiscoEval benchmark for sentence representation learning.
"""
_HOMEPAGE = "https://github.com/ZeweiChu/DiscoEval"
class DiscoEvalSentence(datasets.GeneratorBasedBuilder):
"""DiscoEval Benchmark"""
VERSION = datasets.Version("1.1.0")
BUILDER_CONFIGS = [
datasets.BuilderConfig(
name=SPARXIV,
version=VERSION,
description="Sentence positioning dataset from arXiv",
),
datasets.BuilderConfig(
name=SPROCSTORY,
version=VERSION,
description="Sentence positioning dataset from ROCStory",
),
datasets.BuilderConfig(
name=SPWIKI,
version=VERSION,
description="Sentence positioning dataset from Wikipedia",
),
datasets.BuilderConfig(
name=DCCHAT,
version=VERSION,
description="Discourse Coherence dataset from chat",
),
datasets.BuilderConfig(
name=DCWIKI,
version=VERSION,
description="Discourse Coherence dataset from Wikipedia",
),
datasets.BuilderConfig(
name=RST,
version=VERSION,
description="The RST Discourse Treebank dataset ",
),
datasets.BuilderConfig(
name=PDTB_E,
version=VERSION,
description="The Penn Discourse Treebank - Explicit dataset.",
),
datasets.BuilderConfig(
name=PDTB_I,
version=VERSION,
description="The Penn Discourse Treebank - Implicit dataset.",
),
datasets.BuilderConfig(
name=SSPABS,
version=VERSION,
description="The SSP dataset.",
),
datasets.BuilderConfig(
name=BSOARXIV,
version=VERSION,
description="The BSO Task with the arxiv dataset.",
),
datasets.BuilderConfig(
name=BSOWIKI,
version=VERSION,
description="The BSO Task with the wiki dataset.",
),
datasets.BuilderConfig(
name=BSOROCSTORY,
version=VERSION,
description="The BSO Task with the rocstory dataset.",
),
]
def _info(self):
if self.config.name in [SPARXIV, SPROCSTORY, SPWIKI]:
features_dict = {
TEXT_COLUMN_NAME[i]: datasets.Value('string')
for i in range(SP_TEXT_COLUMNS)
}
features_dict[LABEL_NAME] = datasets.ClassLabel(
names=list(SP_LABELS.values()),
)
features = datasets.Features(features_dict)
elif self.config.name in [BSOARXIV, BSOWIKI, BSOROCSTORY]:
features_dict = {
TEXT_COLUMN_NAME[i]: datasets.Value('string')
for i in range(BSO_TEXT_COLUMNS)
}
features_dict[LABEL_NAME] = datasets.ClassLabel(
names=list(BSO_LABELS.values())
)
features = datasets.Features(features_dict)
elif self.config.name in [DCCHAT, DCWIKI]:
features_dict = {
TEXT_COLUMN_NAME[i]: datasets.Value('string')
for i in range(DC_TEXT_COLUMNS)
}
features_dict[LABEL_NAME] = datasets.ClassLabel(
names=list(DC_LABELS.values())
)
features = datasets.Features(features_dict)
elif self.config.name in [RST]:
features_dict = {
TEXT_COLUMN_NAME[i]: [datasets.Value('string')]
for i in range(RST_TEXT_COLUMNS)
}
features_dict[LABEL_NAME] = datasets.ClassLabel(
names=RST_LABELS
)
features = datasets.Features(features_dict)
elif self.config.name in [PDTB_E]:
features_dict = {
TEXT_COLUMN_NAME[i]: datasets.Value('string')
for i in range(PDTB_E_TEXT_COLUMNS)
}
features_dict[LABEL_NAME] = datasets.ClassLabel(
names=list(PDTB_E_LABELS.values())
)
features = datasets.Features(features_dict)
elif self.config.name in [PDTB_I]:
features_dict = {
TEXT_COLUMN_NAME[i]: datasets.Value('string')
for i in range(PDTB_I_TEXT_COLUMNS)
}
features_dict[LABEL_NAME] = datasets.ClassLabel(
names=list(PDTB_I_LABELS.values())
)
features = datasets.Features(features_dict)
elif self.config.name in [SSPABS]:
features_dict = {
TEXT_COLUMN_NAME[i]: datasets.Value('string')
for i in range(SSPABS_TEXT_COLUMNS)
}
features_dict[LABEL_NAME] = datasets.ClassLabel(
names=list(SSPABS_LABELS.values())
)
features = datasets.Features(features_dict)
return datasets.DatasetInfo(
description=_DESCRIPTION,
features=features,
homepage=_HOMEPAGE,
citation=_CITATION,
)
def _split_generators(self, dl_manager):
if self.config.name in [SPARXIV, SPROCSTORY, SPWIKI]:
data_dir = SP_DATA_DIR + "/" + SP_DIRS[self.config.name]
train_name = SP_TRAIN_NAME
valid_name = SP_VALID_NAME
test_name = SP_TEST_NAME
elif self.config.name in [BSOARXIV, BSOWIKI, BSOROCSTORY]:
data_dir = BSO_DATA_DIR + "/" + BSO_DIRS[self.config.name]
train_name = BSO_TRAIN_NAME
valid_name = BSO_VALID_NAME
test_name = BSO_TEST_NAME
elif self.config.name in [DCCHAT, DCWIKI]:
data_dir = DC_DATA_DIR + "/" + DC_DIRS[self.config.name]
train_name = DC_TRAIN_NAME
valid_name = DC_VALID_NAME
test_name = DC_TEST_NAME
elif self.config.name in [RST]:
data_dir = RST_DATA_DIR
train_name = RST_TRAIN_NAME
valid_name = RST_VALID_NAME
test_name = RST_TEST_NAME
elif self.config.name in [PDTB_E, PDTB_I]:
data_dir = os.path.join(PDTB_DATA_DIR, PDTB_DIRS[self.config.name])
train_name = PDTB_TRAIN_NAME
valid_name = PDTB_VALID_NAME
test_name = PDTB_TEST_NAME
elif self.config.name in [SSPABS]:
data_dir = SSPABS_DATA_DIR
train_name = SSPABS_TRAIN_NAME
valid_name = SSPABS_VALID_NAME
test_name = SSPABS_TEST_NAME
urls_to_download = {
"train": data_dir + "/" + train_name,
"valid": data_dir + "/" + valid_name,
"test": data_dir + "/" + test_name,
}
logger = logging.getLogger(__name__)
data_dirs = dl_manager.download_and_extract(urls_to_download)
logger.info(f"Data directories: {data_dirs}")
downloaded_files = dl_manager.download_and_extract(data_dirs)
logger.info(f"Downloading Completed")
return [
datasets.SplitGenerator(
name=datasets.Split.TRAIN,
gen_kwargs={
"filepath": downloaded_files['train'],
"split": "train",
},
),
datasets.SplitGenerator(
name=datasets.Split.VALIDATION,
gen_kwargs={
"filepath": downloaded_files['valid'],
"split": "dev",
},
),
datasets.SplitGenerator(
name=datasets.Split.TEST,
gen_kwargs={
"filepath": downloaded_files['test'],
"split": "test"
},
),
]
def _generate_examples(self, filepath, split):
logger = logging.getLogger(__name__)
logger.info(f"Current working dir: {os.getcwd()}")
logger.info("generating examples from = %s", filepath)
if self.config.name == RST:
data = pickle.load(open(filepath, "rb"))
for key, line in enumerate(data):
example = {TEXT_COLUMN_NAME[i]: sent for i, sent in enumerate(line[1:])}
example[LABEL_NAME] = line[0]
yield key, example
else:
with io.open(filepath, mode='r', encoding='utf-8') as f:
for key, line in enumerate(f):
line = line.strip().split("\t")
example = {TEXT_COLUMN_NAME[i]: sent for i, sent in enumerate(line[1:])}
if self.config.name == PDTB_E:
example[LABEL_NAME] = PDTB_E_LABELS[line[0]]
if self.config.name == PDTB_I:
example[LABEL_NAME] = PDTB_I_LABELS[line[0]]
elif self.config.name in (DCCHAT, DCWIKI):
example[LABEL_NAME] = DC_LABELS[line[0]]
elif self.config.name == SSPABS:
example[LABEL_NAME] = SSPABS_LABELS[line[0]]
elif self.config.name in (SPWIKI, SPROCSTORY, SPARXIV):
example[LABEL_NAME] = SP_LABELS[line[0]]
elif self.config.name in (BSOARXIV, BSOWIKI, BSOROCSTORY):
example[LABEL_NAME] = BSO_LABELS[line[0]]
yield key, example