File size: 4,888 Bytes
d09f1a6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
import sys
import subprocess
from safetensors.torch import load_file
from diffusers import AutoPipelineForText2Image
from datasets import load_dataset
from huggingface_hub.repocard import RepoCard
from huggingface_hub import HfApi
import torch
import re
import argparse
import os
import zipfile

def do_preprocess(class_data_dir):
    print("Unzipping dataset")
    zip_file_path = f"{class_data_dir}/class_images.zip"
    with zipfile.ZipFile(zip_file_path, 'r') as zip_ref:
        zip_ref.extractall(class_data_dir)
    os.remove(zip_file_path)

def do_train(script_args):
    # Pass all arguments to trainer.py
    print("Starting training...")
    result = subprocess.run(['python', 'trainer.py'] + script_args)
    if result.returncode != 0:
        raise Exception("Training failed.")

def replace_output_dir(text, output_dir, replacement):
            # Define a pattern that matches the output_dir followed by whitespace, '/', new line, or "'"
            # Add system name from HF only in the correct spots
            pattern = rf"{output_dir}(?=[\s/'\n])"
            return re.sub(pattern, replacement, text)
    
def do_inference(dataset_name, output_dir, num_tokens):
    widget_content = []
    try:
        print("Starting inference to generate example images...")
        dataset = load_dataset(dataset_name)
        pipe = AutoPipelineForText2Image.from_pretrained(
            "stabilityai/stable-diffusion-xl-base-1.0", torch_dtype=torch.float16
        )
        pipe = pipe.to("cuda")
        pipe.load_lora_weights(f'{output_dir}/pytorch_lora_weights.safetensors')
        
        prompts = dataset["train"]["prompt"]
        if(num_tokens > 0):
            tokens_sequence = ''.join(f'<s{i}>' for i in range(num_tokens))
            tokens_list = [f'<s{i}>' for i in range(num_tokens)]
        
            state_dict = load_file(f"{output_dir}/{output_dir}_emb.safetensors")
            pipe.load_textual_inversion(state_dict["clip_l"], token=tokens_list, text_encoder=pipe.text_encoder, tokenizer=pipe.tokenizer)
            pipe.load_textual_inversion(state_dict["clip_g"], token=tokens_list, text_encoder=pipe.text_encoder_2, tokenizer=pipe.tokenizer_2)
            
            prompts = [prompt.replace("TOK", tokens_sequence) for prompt in prompts]    

        for i, prompt in enumerate(prompts):
            image = pipe(prompt, num_inference_steps=25, guidance_scale=7.5).images[0]
            filename = f"image-{i}.png"
            image.save(f"{output_dir}/{filename}")
            card_dict = {
                "text": prompt,
                "output": {
                    "url": filename
                }
            }
            widget_content.append(card_dict)
    except Exception as e:
        print("Something went wrong with generating images, specifically: ", e)
    
    try:
        api = HfApi()
        username = api.whoami()["name"]
        repo_id = api.create_repo(f"{username}/{output_dir}", exist_ok=True, private=True).repo_id
        
        with open(f'{output_dir}/README.md', 'r') as file:
            readme_content = file.read()
        
    
        readme_content = replace_output_dir(readme_content, output_dir, f"{username}/{output_dir}")
        
        card = RepoCard(readme_content)
        if widget_content: 
            card.data["widget"] = widget_content
            card.save(f'{output_dir}/README.md')
    
        print("Starting upload...")
        api.upload_folder(
            folder_path=output_dir,
            repo_id=f"{username}/{output_dir}",
            repo_type="model",
        )
    except Exception as e:
        print("Something went wrong with uploading your model, specificaly: ", e)
    else:
        print("Upload finished!")

import sys
import argparse

def main():
    # Capture all arguments except the script name
    script_args = sys.argv[1:]

    # Create the argument parser
    parser = argparse.ArgumentParser()
    parser.add_argument('--dataset_name', required=True)
    parser.add_argument('--output_dir', required=True)
    parser.add_argument('--num_new_tokens_per_abstraction', type=int, default=0)
    parser.add_argument('--train_text_encoder_ti', action='store_true')
    parser.add_argument('--class_data_dir', help="Name of the class images dataset")

    # Parse known arguments
    args, _ = parser.parse_known_args(script_args)

    # Set num_tokens to 0 if '--train_text_encoder_ti' is not present
    if not args.train_text_encoder_ti:
        args.num_new_tokens_per_abstraction = 0

    # Proceed with training and inference
    if args.class_data_dir:
        do_preprocess(args.class_data_dir)
        print("Pre-processing finished!")
    do_train(script_args)
    print("Training finished!")
    do_inference(args.dataset_name, args.output_dir, args.num_new_tokens_per_abstraction)
    print("All finished!")

if __name__ == "__main__":
    main()