Nidhogg-zh commited on
Commit
fb1a83a
·
verified ·
1 Parent(s): 4fc833e

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +176 -124
README.md CHANGED
@@ -1,149 +1,201 @@
1
- ---
2
- license: mit
3
- task_categories:
4
- - question-answering
5
- language:
6
- - en
7
- - zh
8
- pretty_name: MQDialog
9
- size_categories:
10
- - 1K<n<10K
11
- ---
12
-
13
- # Dataset Card for Dataset Name
14
-
15
- <!-- Provide a quick summary of the dataset. -->
16
-
17
- This dataset card aims to be a base template for new datasets. It has been generated using [this raw template](https://github.com/huggingface/huggingface_hub/blob/main/src/huggingface_hub/templates/datasetcard_template.md?plain=1).
18
 
19
  ## Dataset Details
20
 
21
  ### Dataset Description
 
22
 
23
- <!-- Provide a longer summary of what this dataset is. -->
24
-
25
-
26
-
27
- - **Curated by:** [More Information Needed]
28
- - **Funded by [optional]:** [More Information Needed]
29
- - **Shared by [optional]:** [More Information Needed]
30
- - **Language(s) (NLP):** [More Information Needed]
31
- - **License:** [More Information Needed]
32
-
33
- ### Dataset Sources [optional]
34
-
35
- <!-- Provide the basic links for the dataset. -->
36
-
37
- - **Repository:** [More Information Needed]
38
- - **Paper [optional]:** [More Information Needed]
39
- - **Demo [optional]:** [More Information Needed]
40
-
41
- ## Uses
42
-
43
- <!-- Address questions around how the dataset is intended to be used. -->
44
-
45
- ### Direct Use
46
 
47
- <!-- This section describes suitable use cases for the dataset. -->
 
 
48
 
49
- [More Information Needed]
 
 
 
 
50
 
51
- ### Out-of-Scope Use
52
-
53
- <!-- This section addresses misuse, malicious use, and uses that the dataset will not work well for. -->
54
-
55
- [More Information Needed]
56
 
57
  ## Dataset Structure
58
-
59
- <!-- This section provides a description of the dataset fields, and additional information about the dataset structure such as criteria used to create the splits, relationships between data points, etc. -->
60
-
61
- [More Information Needed]
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
62
 
63
  ## Dataset Creation
64
 
65
  ### Curation Rationale
 
66
 
67
- <!-- Motivation for the creation of this dataset. -->
68
-
69
- [More Information Needed]
70
-
71
- ### Source Data
72
-
73
- <!-- This section describes the source data (e.g. news text and headlines, social media posts, translated sentences, ...). -->
74
-
75
- #### Data Collection and Processing
76
-
77
- <!-- This section describes the data collection and processing process such as data selection criteria, filtering and normalization methods, tools and libraries used, etc. -->
78
-
79
- [More Information Needed]
80
-
81
- #### Who are the source data producers?
82
-
83
- <!-- This section describes the people or systems who originally created the data. It should also include self-reported demographic or identity information for the source data creators if this information is available. -->
84
-
85
- [More Information Needed]
86
-
87
- ### Annotations [optional]
88
-
89
- <!-- If the dataset contains annotations which are not part of the initial data collection, use this section to describe them. -->
90
-
91
- #### Annotation process
92
-
93
- <!-- This section describes the annotation process such as annotation tools used in the process, the amount of data annotated, annotation guidelines provided to the annotators, interannotator statistics, annotation validation, etc. -->
94
-
95
- [More Information Needed]
96
-
97
- #### Who are the annotators?
98
-
99
- <!-- This section describes the people or systems who created the annotations. -->
100
-
101
- [More Information Needed]
102
-
103
- #### Personal and Sensitive Information
104
-
105
- <!-- State whether the dataset contains data that might be considered personal, sensitive, or private (e.g., data that reveals addresses, uniquely identifiable names or aliases, racial or ethnic origins, sexual orientations, religious beliefs, political opinions, financial or health data, etc.). If efforts were made to anonymize the data, describe the anonymization process. -->
106
-
107
- [More Information Needed]
108
-
109
- ## Bias, Risks, and Limitations
110
-
111
- <!-- This section is meant to convey both technical and sociotechnical limitations. -->
112
-
113
- [More Information Needed]
114
 
115
  ### Recommendations
 
 
116
 
117
- <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
118
-
119
- Users should be made aware of the risks, biases and limitations of the dataset. More information needed for further recommendations.
120
-
121
- ## Citation [optional]
122
-
123
- <!-- If there is a paper or blog post introducing the dataset, the APA and Bibtex information for that should go in this section. -->
124
-
125
- **BibTeX:**
126
-
127
- [More Information Needed]
128
-
129
- **APA:**
130
-
131
- [More Information Needed]
132
-
133
- ## Glossary [optional]
134
-
135
- <!-- If relevant, include terms and calculations in this section that can help readers understand the dataset or dataset card. -->
136
 
137
- [More Information Needed]
138
 
139
- ## More Information [optional]
140
 
141
- [More Information Needed]
142
 
143
- ## Dataset Card Authors [optional]
144
 
145
- [More Information Needed]
146
 
147
- ## Dataset Card Contact
148
 
149
- [More Information Needed]
 
1
+ # Multi-Questioner Dialogue (MQDialog) Dataset
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2
 
3
  ## Dataset Details
4
 
5
  ### Dataset Description
6
+ The Multi-Questioner Dialogue (MQDialog) dataset is designed to facilitate research in questioner-aware personalization. It contains dialogues with various questioners for each reponder. The dataset is derived from English and Chinese scripts of popular TV shows and real-world conversations. It includes dialogues where selected leading actors act as responders, while other characters or contacts serve as questioners. The dataset contains a diverse set of 12 responders and 173 questioners. The dataset supports research on dialogue generation, response evaluation, and questioner-aware personalization in multi-turn conversations.
7
 
8
+ ### Dataset Sources
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9
 
10
+ - **English scripts**: The Big Bang Theory, Friends, and Modern Family.
11
+ - **Chinese scripts**: My Own Swordsman and Empresses in the Palace.
12
+ - **Real-world conversations (WeChat)**: Records from a single user, focusing on two-person chats. *(Not public, but you can extract the data using the code we provided)*
13
 
14
+ ## Direct Use
15
+ The dataset is suitable for:
16
+ - Training and evaluating questioner-aware multi-turn dialogue systems.
17
+ - Studying personality-aligned response generation.
18
+ - Benchmarking the performance of dialogue models with multi-questioner setups.
19
 
 
 
 
 
 
20
 
21
  ## Dataset Structure
22
+ - **Responders**: 12 leading actors from TV scripts and a single WeChat user.
23
+ - **Questioners**: 173 individuals interacting with the responders, the detailed information is listed in the Table.
24
+ - **Splits**: Randomly divided into training (3761 dialogues per responder on average) and testing (917 dialogues per responder on average).
25
+
26
+ <table>
27
+ <tr>
28
+ <td>Language</td>
29
+ <td>Data Source</td>
30
+ <td># Questioners</td>
31
+ <td>Questioner Examples</td>
32
+ <td>Responder</td>
33
+ <td># train</td>
34
+ <td># test</td>
35
+ </tr>
36
+ <tr>
37
+ <td rowspan="6">English</td>
38
+ <td rowspan="2">The Big Bang Theory</td>
39
+ <td>14</td>
40
+ <td>Priya, Barry, Howard, Leonard, etc.</td>
41
+ <td>Sheldon</td>
42
+ <td>4805</td>
43
+ <td>1101</td>
44
+ </tr>
45
+ <tr>
46
+ <td>12</td>
47
+ <td>Bernadette, Penny, Raj, Stuart, etc.</td>
48
+ <td>Leonard</td>
49
+ <td>4607</td>
50
+ <td>1014</td>
51
+ </tr>
52
+ <tr>
53
+ <td rowspan="2">Friends</td>
54
+ <td>12</td>
55
+ <td>Amy, Chandler, Charlie, Joey, etc.</td>
56
+ <td>Rachel</td>
57
+ <td>3768</td>
58
+ <td>870</td>
59
+ </tr>
60
+ <tr>
61
+ <td>20</td>
62
+ <td>Ben, Mike, Gary, Paul, etc.</td>
63
+ <td>Ross</td>
64
+ <td>3839</td>
65
+ <td>960</td>
66
+ </tr>
67
+ <tr>
68
+ <td rowspan="2">Modern Family</td>
69
+ <td>9</td>
70
+ <td>Alex, Cameron, Dylan, Gloria, etc.</td>
71
+ <td>Claire</td>
72
+ <td>1161</td>
73
+ <td>281</td>
74
+ </tr>
75
+ <tr>
76
+ <td>8</td>
77
+ <td>Haley, Jay, Luke, Mitchell, etc.</td>
78
+ <td>Phil</td>
79
+ <td>881</td>
80
+ <td>246</td>
81
+ </tr>
82
+ <tr>
83
+ <td rowspan="6">Chinese</td>
84
+ <td rowspan="3">My Own Swordsman</td>
85
+ <td>16</td>
86
+ <td>Bai Sanniang, Guo Furong, Mo Xiaobei, etc.</td>
87
+ <td>Tong Xiangyu</td>
88
+ <td>3200</td>
89
+ <td>831</td>
90
+ </tr>
91
+ <tr>
92
+ <td>16</td>
93
+ <td>Bao Daren, Ji Wuming, Zhu Wushuang, etc.</td>
94
+ <td>Bai Zhantang</td>
95
+ <td>2995</td>
96
+ <td>857</td>
97
+ </tr>
98
+ <tr>
99
+ <td>8</td>
100
+ <td>Li Dazui, Xing Butou, Yan Xiaoliu, etc.</td>
101
+ <td>Lv Xiucai</td>
102
+ <td>1635</td>
103
+ <td>409</td>
104
+ </tr>
105
+ <tr>
106
+ <td rowspan="2">Empresses in the Palace</td>
107
+ <td>17</td>
108
+ <td>Cao Guiren, Mei Zhuang, Liu Zhu, etc.</td>
109
+ <td>Zhen Huan</td>
110
+ <td>1229</td>
111
+ <td>350</td>
112
+ </tr>
113
+ <tr>
114
+ <td>11</td>
115
+ <td>Consort Hua, Empress, Huan Bi, etc.</td>
116
+ <td>Emperor</td>
117
+ <td>704</td>
118
+ <td>200</td>
119
+ </tr>
120
+ <tr>
121
+ <td>WeChat Records</td>
122
+ <td>30</td>
123
+ <td>Author's contacts</td>
124
+ <td>Author</td>
125
+ <td>-</td>
126
+ <td>-</td>
127
+ </tr>
128
+ </table>
129
+ *Note: The last response from the responder serves as the ground truth, while preceding dialogues constitute the dialogue history. We provide a compact version of the training set because, during training, the answers within the dialogue history can be used to compute the loss, eliminating the need for the answer in the last sentence.
130
+
131
+ ### Data Files & Code
132
+
133
+ For each responder, dialogues with different questioners are stored in the corresponding folder, `diags_two_role_{responder_name}`. Intermediate results from data processing are also provided. The final datasets used for questioner-aware personalization are:
134
+ - `{script_name}_diags_{responder_name}_{questioner_name}_{responder_name}_response_L512_dev.json`
135
+ - `{script_name}_diags_{responder_name}_{questioner_name}_{responder_name}_response_L512_train.json`
136
+
137
+ Additionally, dialogues with different questioners are clustered based on query similarity. The clustering results are stored in the `diags_two_role_{responder_name}_clustered` folder.
138
+
139
+ We have provided the preprocessed raw data for each scripts named with `{script_name}_dialgs.json`. To extract dialogues for one responder, please run the python file `extract_two_role_diag_{responder_name}.py` under each subfolder.
140
+
141
+ **Related functions**:
142
+ - `get_role_list()`: get whole role name
143
+ - `extract_diag_between_two_role()`: extract and only reserve diags between two roles
144
+ - `clean_diag()`: remove duplicates, remove conversations with only one person, and remove empty values
145
+ - `clean_diag_with_repeated()`: remove conversations with only one person, and remove empty values
146
+ - `split_train_and_dev()`: split training set and validation set
147
+ - `split_diag_with_sliding_window()`: construct diags with limited length through a sliding window
148
+ - `extract_diag_for_target_from_role_conv()`: only reserve diags that the response is from target role
149
+
150
+ ### Data Instances
151
+ Below is an example from the dataset, it contains conversations between the `target_role` (i.e. `responder`) and the `input_role` (i.e. `questioner`).
152
+ ```json
153
+ {
154
+ "id": "episode_14_chunk_6_index_0_part2_piece_0",
155
+ "conversations": [
156
+ {
157
+ "from": "Bernadette",
158
+ "value": "Did you hear? Isn’t it terrible?"
159
+ },
160
+ {
161
+ "from": "Leonard",
162
+ "value": "Have you seen him?"
163
+ },
164
+ {
165
+ "from": "Bernadette",
166
+ "value": "They wouldn’t let me in. Oh my Howie."
167
+ },
168
+ {
169
+ "from": "Leonard",
170
+ "value": "It’ll be okay. It’ll be okay."
171
+ }
172
+ ],
173
+ "target_role": "Leonard",
174
+ "target_role_short": "Leonard",
175
+ "input_role": "Bernadette",
176
+ "input_role_short": "Bernadette",
177
+ "role_pair_id": 8
178
+ }
179
+ ```
180
 
181
  ## Dataset Creation
182
 
183
  ### Curation Rationale
184
+ MQDialog was created to address the need for a multilingual, multi-questioner dataset that reflects questioner-aware personalized response generation in diverse conversational contexts.
185
 
186
+ ### Data Collection and Processing
187
+ - **Scripts**: Extracted dialogues between a responder (leading actor) and questioners (other characters), ensuring a clean dataset by removing errors, repeated content, and irrelevant entries.
188
+ - **Real-world records**: Focused on one-on-one conversations, with new dialogue sessions defined by a time gap (e.g., 3 hours).
189
+ - **Filtering**: Questioners with fewer than 20 interactions were excluded to ensure meaningful analysis.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
190
 
191
  ### Recommendations
192
+ - Use the dataset in conjunction with other corpora to mitigate cultural or linguistic biases.
193
+ - Ensure responsible use of the data, particularly when training models for real-world applications.
194
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
195
 
 
196
 
 
197
 
 
198
 
 
199
 
 
200
 
 
201