nouhadziri commited on
Commit
fcee47c
·
1 Parent(s): 6271874

First version of FaithDial

Browse files
FaithDial.py ADDED
@@ -0,0 +1,152 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Copyright 2020 The HuggingFace Datasets Authors and the current dataset script contributor (Nouha Dziri).
2
+ #
3
+ # Licensed under the Apache License, Version 2.0 (the "License");
4
+ # you may not use this file except in compliance with the License.
5
+ # You may obtain a copy of the License at
6
+ #
7
+ # http://www.apache.org/licenses/LICENSE-2.0
8
+ #
9
+ # Unless required by applicable law or agreed to in writing, software
10
+ # distributed under the License is distributed on an "AS IS" BASIS,
11
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12
+ # See the License for the specific language governing permissions and
13
+ # limitations under the License.
14
+ """FaithDial: A Faithful Benchmark for Information-Seeking Dialogue"""
15
+
16
+
17
+ import json
18
+
19
+ import datasets
20
+
21
+
22
+ # Find for instance the citation on arxiv or on the dataset repo/website
23
+ _CITATION = """\
24
+ @article{dziri2022faithdial,
25
+ title={FaithDial: A Faithful Benchmark for Information-Seeking Dialogue},
26
+ author={Dziri, Nouha and Kamalloo, Ehsan and Milton, Sivan and Zaiane, Osmar and Yu, Mo and Ponti, Edoardo and Reddy, Siva},
27
+ journal={arXiv preprint, arXiv:2204.xxxxx},
28
+ year={2022},
29
+ url={https://arxiv.org/abs/2204.xxxxx}
30
+ }
31
+ """
32
+
33
+ # TODO: Add description of the dataset here
34
+ # You can copy an official description
35
+ _DESCRIPTION = """\
36
+ FaithDial is a new benchmark for hallucination-free dialogues, created by manually editing hallucinated and uncooperative responses in Wizard of Wikipedia.
37
+ """
38
+
39
+ _HOMEPAGE = "https://mcgill-nlp.github.io/FaithDial/"
40
+
41
+ _LICENSE = "MIT"
42
+
43
+ # The HuggingFace Datasets library doesn't host the datasets but only points to the original files.
44
+ # This can be an arbitrary nested dict/list of URLs (see below in `_split_generators` method)
45
+ _URLS = {
46
+ "train": "data/train.json",
47
+ "valid": "data/valid.json",
48
+ "valid_random_split": "data/valid_random_split.json",
49
+ "valid_topic_split": "data/valid_topic_split.json",
50
+ "test": "data/test.json",
51
+ "test_random_split": "data/test_random_split.json",
52
+ "test_topic_split": "data/test_topic_split.json",
53
+ }
54
+
55
+
56
+ class FaithDialDataset(datasets.GeneratorBasedBuilder):
57
+ """FaithDial is a new benchmark for hallucination-free dialogues."""
58
+
59
+ VERSION = datasets.Version("1.0.0")
60
+
61
+ # This is an example of a dataset with multiple configurations.
62
+ # If you don't want/need to define several sub-sets in your dataset,
63
+ # just remove the BUILDER_CONFIG_CLASS and the BUILDER_CONFIGS attributes.
64
+
65
+ # If you need to make complex sub-parts in the datasets with configurable options
66
+ # You can create your own builder configuration class to store attribute, inheriting from datasets.BuilderConfig
67
+ # BUILDER_CONFIG_CLASS = MyBuilderConfig
68
+
69
+ # You will be able to load one or the other configurations in the following list with
70
+ # data = datasets.load_dataset('my_dataset', 'first_domain')
71
+ # data = datasets.load_dataset('my_dataset', 'second_domain')
72
+ BUILDER_CONFIGS = [
73
+ datasets.BuilderConfig(name="plain_text", version=VERSION, description="Plain text"),
74
+ ]
75
+
76
+ DEFAULT_CONFIG_NAME = (
77
+ "plain_text" # It's not mandatory to have a default configuration. Just use one if it make sense.
78
+ )
79
+
80
+ def _info(self):
81
+ features = datasets.Features(
82
+ {
83
+ "dialog_idx": datasets.Value("int32"),
84
+ "response": datasets.Value("string"),
85
+ "original_response": datasets.Value("string"),
86
+ "history": datasets.features.Sequence(datasets.Value("string")),
87
+ "knowledge": datasets.Value("string"),
88
+ "BEGIN": datasets.features.Sequence(datasets.Value("string")),
89
+ "VRM": datasets.features.Sequence(datasets.Value("string")),
90
+ }
91
+ )
92
+
93
+ return datasets.DatasetInfo(
94
+ # This is the description that will appear on the datasets page.
95
+ description=_DESCRIPTION,
96
+ # This defines the different columns of the dataset and their types
97
+ features=features, # Here we define them above because they are different between the two configurations
98
+ # If there's a common (input, target) tuple from the features, uncomment supervised_keys line below and
99
+ # specify them. They'll be used if as_supervised=True in builder.as_dataset.
100
+ # supervised_keys=("sentence", "label"),
101
+ # Homepage of the dataset for documentation
102
+ homepage=_HOMEPAGE,
103
+ # License for the dataset if available
104
+ license=_LICENSE,
105
+ # Citation for the dataset
106
+ citation=_CITATION,
107
+ )
108
+
109
+ def _split_generators(self, dl_manager):
110
+ # If several configurations are possible (listed in BUILDER_CONFIGS), the configuration selected by the user is in self.config.name
111
+
112
+ # dl_manager is a datasets.download.DownloadManager that can be used to download and extract URLS
113
+ # It can accept any type or nested list/dict and will give back the same structure with the url replaced with path to local files.
114
+ # By default the archives will be extracted and a path to a cached folder where they are extracted is returned instead of the archive
115
+ downloaded_files = dl_manager.download_and_extract(_URLS)
116
+
117
+ split_dict = {
118
+ "train": datasets.Split.TRAIN,
119
+ "valid": datasets.Split.VALIDATION,
120
+ "test": datasets.Split.TEST,
121
+ }
122
+
123
+ return [
124
+ datasets.SplitGenerator(
125
+ name=split_dict.get(split, split),
126
+ # These kwargs will be passed to _generate_examples
127
+ gen_kwargs={
128
+ "filepath": downloaded_file,
129
+ "split": split,
130
+ },
131
+ )
132
+ for split, downloaded_file in sorted(downloaded_files.items(), key=lambda x: x[0])
133
+ ]
134
+
135
+ # method parameters are unpacked from `gen_kwargs` as given in `_split_generators`
136
+ def _generate_examples(self, filepath, split):
137
+ # The `key` is for legacy reasons (tfds) and is not important in itself, but must be unique for each example.
138
+ with open(filepath, encoding="utf-8") as f:
139
+ data = json.load(f)
140
+ key = 0
141
+ for dialogue in data:
142
+ for utterance in dialogue["utterances"]:
143
+ yield key, {
144
+ "dialog_idx": dialogue["dialog_idx"],
145
+ "response": utterance["response"],
146
+ "original_response": utterance["original_response"],
147
+ "history": utterance["history"],
148
+ "knowledge": utterance["knowledge"],
149
+ "BEGIN": utterance["BEGIN"],
150
+ "VRM": utterance["VRM"],
151
+ }
152
+ key += 1
data/dummy/plain_text/1.0.0/dummy_data.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:7d44546ee0397c1634eadfc40f347c0f24d5c5950570cb349b4bf234214ec56a
3
+ size 28210
data/dummy/plain_text/1.0.0/dummy_data.zip.lock ADDED
File without changes
dataset_infos.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"plain_text": {"description": "FaithDial is a new benchmark for hallucination-free dialogues, created by manually editing hallucinated and uncooperative responses in Wizard of Wikipedia.\n", "citation": "@article{dziri2022faithdial,\n title={FaithDial: A Faithful Benchmark for Information-Seeking Dialogue},\n author={Dziri, Nouha and Kamalloo, Ehsan and Milton, Sivan and Zaiane, Osmar and Yu, Mo and Ponti, Edoardo and Reddy, Siva},\n journal={arXiv preprint, arXiv:2204.xxxxx},\n year={2022},\n url={https://arxiv.org/abs/2204.xxxxx}\n}\n", "homepage": "https://mcgill-nlp.github.io/FaithDial/", "license": "MIT", "features": {"dialog_idx": {"dtype": "int32", "id": null, "_type": "Value"}, "response": {"dtype": "string", "id": null, "_type": "Value"}, "original_response": {"dtype": "string", "id": null, "_type": "Value"}, "history": {"feature": {"dtype": "string", "id": null, "_type": "Value"}, "length": -1, "id": null, "_type": "Sequence"}, "knowledge": {"dtype": "string", "id": null, "_type": "Value"}, "BEGIN": {"feature": {"dtype": "string", "id": null, "_type": "Value"}, "length": -1, "id": null, "_type": "Sequence"}, "VRM": {"feature": {"dtype": "string", "id": null, "_type": "Value"}, "length": -1, "id": null, "_type": "Sequence"}}, "post_processed": null, "supervised_keys": null, "task_templates": null, "builder_name": "faith_dial_dataset", "config_name": "plain_text", "version": {"version_str": "1.0.0", "description": null, "major": 1, "minor": 0, "patch": 0}, "splits": {"test": {"name": "test", "num_bytes": 2770907, "num_examples": 3539, "dataset_name": "faith_dial_dataset"}, "test_random_split": {"name": "test_random_split", "num_bytes": 1356913, "num_examples": 1716, "dataset_name": "faith_dial_dataset"}, "test_topic_split": {"name": "test_topic_split", "num_bytes": 1416547, "num_examples": 1823, "dataset_name": "faith_dial_dataset"}, "train": {"name": "train", "num_bytes": 14393919, "num_examples": 18357, "dataset_name": "faith_dial_dataset"}, "validation": {"name": "validation", "num_bytes": 2703363, "num_examples": 3417, "dataset_name": "faith_dial_dataset"}, "valid_random_split": {"name": "valid_random_split", "num_bytes": 1346226, "num_examples": 1666, "dataset_name": "faith_dial_dataset"}, "valid_topic_split": {"name": "valid_topic_split", "num_bytes": 1358013, "num_examples": 1751, "dataset_name": "faith_dial_dataset"}}, "download_checksums": {"data/train.json": {"num_bytes": 19499858, "checksum": "51eff8212d804b1954b7eefa8987265750f0412b0b18b534ed2dbe636e524512"}, "data/valid.json": {"num_bytes": 3650206, "checksum": "0f4da554dc07a2f5a14b96d6997f6e21358c6e7c159161526fc55a7f39751d5f"}, "data/valid_random_split.json": {"num_bytes": 1808271, "checksum": "1ca3a70c71fc212f399679b8090d8edad733c2c7d2672a2f1960bec466de596f"}, "data/valid_topic_split.json": {"num_bytes": 1842813, "checksum": "e3b161e6bd1a83bb8cabe0ff07530649473f485cd61c76048bf12cfa5ebbb751"}, "data/test.json": {"num_bytes": 3749121, "checksum": "acae13df566cdb2bf28274465a9b314dd0f66211fb9d40781c3c6922df33f674"}, "data/test_random_split.json": {"num_bytes": 1831274, "checksum": "6b8779a7442e5c60378b4a6ac7ce0681fc0923dc8a3189ec804abd9cad8b916b"}, "data/test_topic_split.json": {"num_bytes": 1920402, "checksum": "ee966f854b52688810209b2d93afba223151fa3f6d8e2df311cd88ac86ff5f4d"}}, "download_size": 34301945, "post_processing_size": null, "dataset_size": 25345888, "size_in_bytes": 59647833}}