File size: 6,929 Bytes
5b9ab7f 8ffe199 b9ae9f5 2b62b13 8ffe199 b9ae9f5 2b62b13 3f56801 2b62b13 3f56801 2b62b13 3f56801 2b62b13 3f56801 5b9ab7f 72f91c6 102358b 72f91c6 4bf8555 72f91c6 c27cef8 72f91c6 4bf8555 72f91c6 7656e0c 72f91c6 7656e0c 72f91c6 7656e0c 72f91c6 7656e0c 72f91c6 7656e0c 72f91c6 7656e0c 4bf8555 102358b 7656e0c 102358b 7656e0c bffb5d9 7656e0c bffb5d9 7656e0c 342e482 7656e0c 4bf8555 7656e0c 4bf8555 72f91c6 bffb5d9 12d1c24 bffb5d9 12d1c24 bffb5d9 72f91c6 7656e0c 72f91c6 6428ca4 7656e0c 6428ca4 72f91c6 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 |
---
license: apache-2.0
configs:
- config_name: default
data_files:
- split: train
path: data/train-*
- config_name: original-splits
data_files:
- split: train
path: original-splits/train-*
- split: validation
path: original-splits/validation-*
- split: test
path: original-splits/test-*
dataset_info:
- config_name: default
features:
- name: id
dtype: string
- name: question
dtype: string
- name: chain
dtype: string
- name: result
dtype: string
- name: result_float
dtype: float64
- name: question_without_options
dtype: string
- name: options
struct:
- name: A
dtype: string
- name: B
dtype: string
- name: C
dtype: string
- name: D
dtype: string
- name: E
dtype: string
- name: annotated_formula
dtype: string
- name: linear_formula
dtype: string
- name: rationale
dtype: string
- name: category
dtype: string
splits:
- name: train
num_bytes: 25058735
num_examples: 20868
download_size: 11157481
dataset_size: 25058735
- config_name: original-splits
features:
- name: id
dtype: string
- name: question
dtype: string
- name: chain
dtype: string
- name: result
dtype: string
- name: result_float
dtype: float64
- name: question_without_options
dtype: string
- name: options
struct:
- name: A
dtype: string
- name: B
dtype: string
- name: C
dtype: string
- name: D
dtype: string
- name: E
dtype: string
- name: annotated_formula
dtype: string
- name: linear_formula
dtype: string
- name: rationale
dtype: string
- name: category
dtype: string
splits:
- name: train
num_bytes: 25058735
num_examples: 20868
- name: validation
num_bytes: 3722848
num_examples: 3102
- name: test
num_bytes: 2423833
num_examples: 2029
download_size: 13928430
dataset_size: 31205416
---
# Dataset Card for Calc-math_qa
## Summary
This dataset is an instance of math_qa dataset, converted to a simple HTML-like language that can be easily parsed (e.g. by BeautifulSoup). The data contains 3 types of tags:
- gadget: A tag whose content is intended to be evaluated by calling an external tool (sympy-based calculator in this case)
- output: An output of the external tool
- result: The final answer of the mathematical problem (correct option)
## Supported Tasks
The dataset is intended for training Chain-of-Thought reasoning **models able to use external tools** to enhance the factuality of their responses.
This dataset presents in-context scenarios where models can outsource the computations in the reasoning chain to a calculator.
## Construction Process
We took the original math_qa dataset, parsed the nested formulas, linearized them into a sequence (chain) of operations, and replaced all advanced
function calls (such as `circle_area`) with explicit elementary operations. We evaluate all the steps in each example and filter out examples if their
evaluation does not match the answer selected as correct in the data with a 5% tolerance, with about 26k examples remaining. The sequence of steps is then saved in HTML-like language
in the `chain` column.
We also perform in-dataset and cross-dataset data-leak detection within [Calc-X collection](https://huggingface.co./collections/MU-NLPC/calc-x-652fee9a6b838fd820055483).
Specifically for MathQA, we found that majority of validation and test examples are near-duplicates of some example in the train set, and that all validation and test
examples likely originate from the Aqua-RAT train split. We do not recommend to original validation and test splits of the MathQA dataset.
You can read more information about this process in our [Calc-X paper](https://arxiv.org/abs/2305.15017).
## Data splits
In our default configuration, test and validation splits are removed and we recommend using MathQA for training only. You can load it using:
```python
datasets.load_dataset("MU-NLPC/calc-math_qa")
```
If you want to use the original dataset splits, you can load it using:
```python
datasets.load_dataset("MU-NLPC/calc-math_qa", "original-splits")
```
## Atributes
- **id** - id of the example
- **question** - the description of a mathematical problem in natural language, and includes the options to be selected from
- **chain** - solution in the form of step-by-step calculations encoded in simple html-like language. computed from `annotated_formula` column
- **result** - the correct option
- **result_float** - the result converted to a float
- **question_without_options** - same as `question`, but does not contain the options
- **options** - dictionary of options to choose from, one is correct, keys are "A".."E"
- **annotated_formula** - human-annotated nested expression that (approximately) evaluates to the selected correct answer
- **linear_formula** - same as `annotated_formula`, but linearized by original math_qa authors
- **rationale** - human-annotated free-text reasoning that leads to the correct answer
- **category** - category of the math problem
Attributes **id**, **question**, **chain**, and **result** are present in all datasets in [Calc-X collection](https://huggingface.co./collections/MU-NLPC/calc-x-652fee9a6b838fd820055483).
## Sources
- [mathqa HF dataset](https://huggingface.co./datasets/math_qa)
- [official website](https://math-qa.github.io/)
## Related work
This dataset was created as a part of a larger effort in training models capable of using a calculator during inference, which we call Calcformers.
We have released a collection of datasets on solving math problems with calculator interactions on HuggingFace called [Calc-X collection](https://huggingface.co./collections/MU-NLPC/calc-x-652fee9a6b838fd820055483).
You can find the models we trained in the [Calcformers collection](https://huggingface.co./collections/MU-NLPC/calcformers-65367392badc497807b3caf5).
You can read more in our paper [Calc-X and Calcformers](https://arxiv.org/abs/2305.15017).
## Licence
Apache 2.0, consistently with the original dataset.
## Cite
If you use this version of dataset in research, please cite the [original MathQA paper](https://arxiv.org/abs/1905.13319), and [Calc-X paper](https://arxiv.org/abs/2305.15017) as follows:
```bibtex
@inproceedings{kadlcik-etal-2023-soft,
title = "Calc-X and Calcformers: Empowering Arithmetical Chain-of-Thought through Interaction with Symbolic Systems",
author = "Marek Kadlčík and Michal Štefánik and Ondřej Sotolář and Vlastimil Martinek",
booktitle = "Proceedings of the The 2023 Conference on Empirical Methods in Natural Language Processing: Main track",
month = dec,
year = "2023",
address = "Singapore, Singapore",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/2305.15017",
}
``` |