$w^{*}_{i}$
${T_{j}^{R}},j\in\{1,2\}$
$G=(V,E)$
$\displaystyle(k-k^{\prime})\times n_{L}\times|x-A|+n_{L}\times k^{\prime}% \times\big{(}|x-A|+|x-A-B|\big{)}\xrightarrow{\text{no edge weights are % changed, set }x=A}$
$E_{L}$
$\displaystyle(\underbrace{\frac{{\mathcal{L}}{n_{L}}+{n_{R}}(1-{\mathcal{R}})}% {2{n_{L}}}-i}_{\leq\frac{{\mathcal{L}}{n_{L}}+{n_{R}}(1-{\mathcal{R}})}{2{n_{L% }}}})(\underbrace{{n^{2}_{L}}\times({\mathcal{L}}-1)+{n_{L}}{n_{R}}(2j-{% \mathcal{R}})}_{\leq{n^{2}_{L}}\times({\mathcal{L}}-1)+{n_{L}}{n_{R}}({% \mathcal{R}})})+j\underbrace{({n^{2}_{R}}(1-{\mathcal{R}})+{n_{L}}{n_{R}}({% \mathcal{L}}-2\times\frac{{\mathcal{L}}{n_{L}}+{n_{R}}(1-{\mathcal{R}})}{2{n_{% L}}})}_{=0})$
$x=\sum_{j=0}^{i}w_{j}$
$y=C+\epsilon_{2}$
$E$
$z$
$\overline{E_{m}}=E-E_{m}$
$\displaystyle\xrightarrow{0\leq x $\epsilon_{1}+\epsilon_{2}\leq 1$ $C_{L}$ $(v,u)$ $w(e)$ $-L_{i}\times S_{RU}$ $V_{R}=\{w|(v_{2},w)\in E^{\prime}\},{\mathcal{R}}=|V_{R}|$ $v^{\prime}_{4}$ $S_{L}\xleftarrow{}\sum_{\forall e_{i}\in E_{L}}L_{i}$ $\alpha_{2}\geq B$ $w^{\prime}(e_{i})=w(e_{i})+\epsilon_{i}$ $e^{*}=(v_{n_{1}+1},v_{n_{1}+2})$ $i$ $j=0$ $w_{2}$ $\displaystyle=\mathcal{E}(M_{0})+\epsilon_{1}\times\sum_{e_{i}\in E_{L}}L_{i}%
\times w^{*}\times(S_{L}-L_{i}-S_{R})+\epsilon_{2}\times\sum_{e_{i}\in E_{R}}R%
_{i}\times w^{*}\times(S_{R}-R_{i}-S_{L})$ $S_{RU}\geq S_{LU}$ $c^{\prime}_{i}=c_{i}-\epsilon$ $n_{L}=n-(k+k^{\prime})$ $T_{i}^{R}$ $|\Delta E|=n_{L}(|x-A|+|x-A-B|)+n_{R}(|y-C|+|y-B-C|)+n_{L}n_{R}|x+y-A-B-C|=n_{%
L}\alpha_{1}+n_{R}\alpha_{2}+n_{L}n_{R}|x+y-A-B-C|$ $\epsilon_{n_{1}}=w^{*}$ $\displaystyle\geq$ $|\Delta E|=\sum_{u\in V_{m},v\in\overline{V_{m}},\text{ or }u,v\in\overline{V_%
{m}},u\neq v}\left|d_{G}(u,v)-d_{G^{\prime}}(u,v)\right|$ $n_{2}+1$ $7-21\leq 2=L_{1}$ $z=w^{*}$ $x=\sum_{j=0}^{i+1}w_{j}$ $M^{\prime}$ $\displaystyle\Delta=$ $u\in G_{1},v\in G_{2}$ $\displaystyle|\Delta E|^{\prime}=$ $x+y$ $u_{1}\in T_{1}^{L},u_{2}\in T_{1}^{R}$ $S_{L}=S_{LU}+S_{LM}$ $S_{R}=S_{RU}$ $\mathcal{E}_{R}$ $w:E\xrightarrow[]{}\mathbb{R}_{\geq 0}$ $c_{j}=\epsilon_{2}=0.5$ $0.1$ $e^{*}=(v_{2},v_{3})$ ${\mathcal{L}}\choose 2$ $\mathcal{E}(M^{\prime\prime})=\mathcal{E}(M^{\prime})+\Delta_{2}({\text{MARK\_%
LEFT}})=\underbrace{\mathcal{E}(M^{\prime})+(c_{1})\times X}_{=\mathcal{E}(M^{%
\prime})+\Delta_{1}({\text{MARK\_LEFT}})=\mathcal{E}(M)}+(1-c_{1})\times X<%
\mathcal{E}(M)$ $|w^{*}|-\left|w^{*}-\sum_{k=n_{1}+1}^{j-2}\epsilon_{k}\right|$ $V_{R}=\{v_{5},v_{6}\}$ $u\in V_{L}$ $L_{i}$ $0 $\overline{V_{m}}=V-\{v_{1},v_{2}\}$ $(n-2k)w^{*}_{k}$ $u_{1}\in T_{1}^{R},u_{2}\in T_{2}^{R}$ $\alpha_{1}\geq B$ $e$ $L_{1}\times L_{2}\times 2w^{*}$ $\mathcal{E}(M_{L}^{*})=\underbrace{\mathcal{E}(M_{0})}_{\text{The error %
associated with the empty marking}}+\underbrace{\sum_{e_{i}\in E_{L}}L_{i}%
\times w^{*}\times(S_{L}-L_{i}-S_{R})}_{\text{The sum of all }\Delta({\text{%
MARK\_LEFT}})\text{'s that
transform }M_{0}\text{ into }M_{L}^{*}}$ $\mathcal{E}=\mathcal{E}_{L}+\mathcal{E}_{R}+\mathcal{E}_{LR}$ $\epsilon_{i}\neq 0$ $\epsilon\times w^{*}$ $\pi:\mathcal{G}\xrightarrow{}\mathbb{R}$ $j$ $y=B+C$ $S_{L}-S_{R}>L_{i}$ $21-7\leq 20=R_{1}$ $\mathcal{E}(.)$ $e^{*}_{k}$ ${\mathcal{L}}={\mathcal{R}}=2$ $\displaystyle(k-k^{\prime})\times n_{R}\times|y-B-C|+n_{R}\times k^{\prime}%
\times\big{(}|y-C|+|y-B-C|\big{)}$ $w(e_{i})+\epsilon_{i}$ $w^{\prime}(e_{3})=w_{3}+w^{*}$ $c_{i}=\epsilon_{1}$ $0\leq\epsilon_{2}\leq w^{*}$ $x=A+B$ $T_{i}={t^{1}_{1},\dots,t^{1}_{k}}$ $X=\{x_{1},x_{2},...,x_{n}\}$ $T_{i}\sim p_{\theta}(t^{1}_{1\dots k}\mid x_{1}\dots,x_{n})$ $t^{i}_{j}*\sim p^{vote}_{\theta}(t^{i}_{j}*|B)$ $X$ $n-1$ $V(p_{\theta},T_{i})(t^{i}_{j})=1[t^{i}_{j}=t^{i}_{j}*]$ $n_{i}\in N$ $t^{n}_{1}\sim t^{n}_{k}$ $G=F(X)$ $X=\{x_{1},x_{2},...,x_{m}\}$ $t^{i-1}_{j}$ $x_{i}$ $t^{i}_{j}$ $F$ $G=(N,E)$ $\{t^{i}_{1},\dots,t^{i}_{k}\}\sim p_{\theta}(t^{i}_{1\dots k}\mid x_{1\dots n}%
,t^{i-1}_{j})$