$c_{j}=\epsilon_{2}$
$\{e_{1},e_{2}\}$
$\Delta_{2}({\text{MARK\_LEFT}})=(c_{1})\times X+(1-c_{1})\times X$
$A$
$S$
$\alpha\geq 1$
$|w_{3}+w^{*}+w_{4}-w_{3}-w_{4}|=w^{*}$
$\displaystyle\pi_{v_{i},u_{j}}$
$\{v^{\prime}_{4},v^{\prime}_{5},v^{\prime}_{6}\}$
$x=w_{0}$
$v_{n_{1}+1}$
$\displaystyle=$
$e^{*},$
${n_{L}}{n_{R}}\times(({\mathcal{L}}-i-1)({\mathcal{R}}-j)-({\mathcal{L}}-i)({% \mathcal{R}}-j))={n_{L}}{n_{R}}\times({\mathcal{L}}{\mathcal{R}}-{\mathcal{L}}% j-i{\mathcal{R}}+ij-{\mathcal{R}}+j-{\mathcal{L}}{\mathcal{R}}+{\mathcal{L}}j+% i{\mathcal{R}}-ij)={n_{L}}{n_{R}}\times(j-{\mathcal{R}})$
${R}_{j}$
$-2\times R_{i}\times(S_{RM}-R_{i})$
$V_{m}=\{v|v,u\in V,\exists e=(u,v)\in E_{m}\}$
$v_{2}$
$\Delta_{v_{i},u_{j}}=\mathcal{E}^{v_{i},u_{j}}_{2}-\mathcal{E}^{v_{i},u_{j}}_{% 1}=\left|w^{*}_{k}\right|-\left|\mathcal{W}^{\prime}(E^{(v_{i},u_{j})})-% \mathcal{W}^{*}(E^{(v_{i},u_{j})})\right|\leq\left|w^{*}_{k}-\mathcal{W}^{% \prime}(E^{(v_{i},u_{j})})+\mathcal{W}^{*}(E^{(v_{i},u_{j})})\right|$
$k$
$w^{\prime}(e_{i})=w(e_{i})+\epsilon_{i},\epsilon_{i}\in\{0,w^{*}\}$
$c_{1}$
$n_{R}=3$
$\displaystyle=n_{L}\times(w_{0}-x+w_{0}+w_{1}-x+\dots+w_{0}+w_{1}+\dots+w_{k}-% x)=n_{L}\times\big{(}\big{(}\sum_{j=0}^{k}(k+1-j)w_{j}\big{)}-(k+1)\times x% \big{)}$
$\mathcal{C}(v)=k$
$\{v_{1},v_{2}\}$
$\mathcal{E}_{L}^{(\frac{k}{2})}$
$k^{\prime}$
$c_{i}+c_{j}\leq 1$
$S_{L}-L_{i}-S_{R}\leq 0$
$\{v^{\prime}_{1},v^{\prime}_{2},v^{\prime}_{3}\}$
$E^{\prime}\subset E$
$v_{1},v_{3}\in\overline{V_{m}}$
$w^{*}_{1},w^{*}_{2},\dots,w^{*}_{k}$
$\mathcal{F}$
$x<0$
$C\leq x\leq B+C$
$T_{j}^{L}$
$\mathcal{E}(M_{L}^{*})\leq\mathcal{E}(M_{R}^{*})\xrightarrow[]{}\sum_{e_{i}\in E% _{L}}L_{i}\times w^{*}\times(S_{L}-L_{i}-S_{R})\leq\sum_{e_{i}\in E_{R}}R_{i}% \times w^{*}\times(S_{R}-R_{i}-S_{L})$
$x\geq A+B$
$\mathcal{E}_{LR}$
$\displaystyle\geq\mathcal{E}(M_{0})+\sum_{e_{i}\in E_{L}}L_{i}\times w^{*}% \times(S_{L}-L_{i}-S_{R})=\mathcal{E}(M_{L}^{*})$
$x $S_{RM}>0$ $\mathcal{E}(M)<\mathcal{E}(M^{\prime})$ ${L}_{i}$ ${n_{R}}$ $e_{1}=(v_{1},v_{3})$ ${\mathcal{L}}\xleftarrow[]{}|E_{L}|$ $\mathcal{E}_{L}$ $\mathcal{E}(M^{\prime\prime})\leq\mathcal{E}(M)$ $w^{*}$ $0<\epsilon $|\sum_{k=i}^{n_{1}}\epsilon_{k}|$ $|\Delta E|$ $-R_{i}\times S_{LM}$ $w^{\prime}(e)=w(e)+w(e^{*})$ $u_{1}\in T_{i}^{L},u_{2}\in T_{j}^{R}$ $S_{RM}=0$ $\Delta({\text{MARK\_LEFT}})\leq 0$ $C_{R}$ $-L_{i}\times(S_{LM})+L_{i}\times(S_{LU}-L_{i})$ $c_{0},c_{1},\dots,c_{i}$ $k+1-j$ $|\Delta E|\geq(n-2)B=|\overline{V_{m}}|B$ $B\times k^{\prime}\times(n-(k+k^{\prime}))=B\times(n-2)$ $P^{\prime}$ $|\Delta E|^{\prime}\geq w^{*}$ $C$ $|y-C|+|y-B-C|$ $E_{m}\subset E$ $j
$\overline{V_{m}}=V-V_{m}$ $v_{i}\in V_{L},v_{i}\neq v_{n_{1}+1}$ ${\mathcal{L}}$ $e^{*}=(v_{1},v_{2})$ $y=C$ $\mathcal{E}(M_{L}^{*})\leq\mathcal{E}(M_{R}^{*})$ $u\in T_{2}^{L}$ $\Delta({\text{UNMARK\_RIGHT}})$ $v_{i},v_{j}\in V_{L}\;(i $c_{i}=1$ ${n^{2}_{R}}\times((j-1)({\mathcal{R}}-j+1)-j({\mathcal{R}}-j))={n^{2}_{R}}%
\times(j{\mathcal{R}}-j^{2}+j-{\mathcal{R}}+j-1-j{\mathcal{R}}+j^{2})={n^{2}_{%
R}}\times(2j-{\mathcal{R}}-1)$ $\mathcal{C}(u)=k^{\prime}$ $E^{\prime}$ $0.4$ $\Delta({\text{UNMARK\_RIGHT}})=0$ ${n_{L}}{n_{R}}((i+1)j-ij)={n_{L}}{n_{R}}\times j$ $-\left|w^{*}-\sum_{k=i}^{n_{1}}\epsilon_{k}\right|$ $c_{i} $e\in E^{\prime}$ $k-k^{\prime}\geq 0$ $-R_{i}\times(S_{RU})+R_{i}\times(S_{RM}-R_{i})$ $w^{*}_{k}$ $\operatorname{CONTRACTION}(\pi)$ $T-\{v_{1},v_{2}\}$ $V_{R}$ $\begin{array}[]{cc}\Delta&=R_{i}\times\bigg{(}\underbrace{-(S_{RM}-R_{i})}_{<0%
}-S_{RU}\underbrace{-S_{LM}}_{<0}+S_{LU}\bigg{)} $G=P_{n}$ $\triangleright$