$E^{(v_{1},u_{5})}=\{e_{1},e^{*}_{1},e_{2},e_{3},e^{*}_{2},e_{4}\}$

$x=\sum_{k=i}^{n_{1}}\epsilon_{k}$

$v_{i},v_{j}\in V_{R}$

$G^{\prime}$

$c_{i+1},\dots,c_{k}$

$S_{R}-R_{i}-S_{L}\leq 0$

$n\geq 3$

$\underbrace{|w^{*}-(c_{i}\times w^{*}+c_{j}\times w^{*}-\epsilon\times w^{*})|% }_{=w^{*}-(c_{i}\times w^{*}+c_{j}\times w^{*}-\epsilon\times w^{*})\text{ % because }c_{i}+c_{j}\leq 1}-\underbrace{|w^{*}-(c_{i}\times w^{*}+c_{j}\times w% ^{*})|}_{=w^{*}-(c_{i}\times w^{*}+c_{j}\times w^{*})\text{ because }c_{i}+c_{% j}\leq 1}=\epsilon\times w^{*}$

$w_{i}=w(e_{i})\;\forall i\in\{0,\dots,k+1\}$

$u_{1}\in T_{1}^{L},u_{2}\in T_{2}^{L}$

$\pi$

$\displaystyle\mathcal{E}_{L}^{(i+1)}=$

$i\geq\frac{{\mathcal{L}}}{2}+\frac{{n_{R}}(1-{\mathcal{R}})}{2{n_{L}}}$

$\displaystyle\mathcal{E}(M)=$

$n_{L}n_{R}|x+y-A-B-C|$

$V^{\prime}\subset V$

$R_{i}={n_{R}},\;1\leq i\leq{\mathcal{R}}$

$\pi_{v_{i},u_{j+1}}=\pi_{v_{i},u_{j}}+w^{*}_{k}\text{, }\pi^{\prime}_{v_{i},u_% {j}}=\pi^{\prime}_{v_{i},u_{j+1}}\text{, and }\pi^{\prime\prime}_{v_{i},u_{j}}% =\pi^{\prime\prime}_{v_{i},u_{j+1}}$

$u_{1}\in T_{i}^{L},u_{2}\in T_{j}^{L}$

$\epsilon=0.4$

$e\in E_{m}$

$c_{i}$

$e_{i},w_{i}=w(e_{i})$

$\displaystyle\mathcal{E}^{(x

$V_{m}=\{u_{1},\dots,u_{2k}\}$

$\displaystyle\underbrace{n_{L}\times n_{R}\times|x+y-A-B-C|}_{\text{between % the subpath of }w_{1}\text{ and }w_{2}}$

$\mathcal{E}^{v_{i},u_{j}}_{2}=\left|\pi^{\prime\prime}_{v_{i},u_{j}}-\pi_{v_{i% },u_{j}}\right|=\left|w^{*}_{k}\right|$

$c_{i}>0$

$d$

$x

$\frac{\mathcal{E}^{(\frac{k}{2})}_{L}}{n_{L}}-\frac{\mathcal{E}_{L}}{n_{L}}\leq 0$

$\mathcal{E}^{v_{i},u_{j+1}}_{2}=0$

$\displaystyle\xrightarrow[]{}\mathcal{E}(M)\geq\mathcal{E}(M_{L}^{*})$

$|x+y-A-B-C|$

$E^{(u,v)}$

$x=w_{0}+w_{1}+\dots+w_{\frac{k}{2}}$

$w_{1}+w_{2}+w_{3}$

$j\xleftarrow[]{}0$

$S_{R}=S_{RU}+S_{RM}$

$v^{*}$

$c_{1}+c_{2}=0.6+0.8=1.4>1$

$S_{L}=\sum_{i=1}^{{\mathcal{L}}}L_{i}$

$c_{1}+c_{2}=1+\epsilon$

$w^{\prime}(e_{i})=w(e_{i})+w^{*}$

$\{e_{1},e_{3}\}$

$G^{{}^{\prime}}$

$i\xleftarrow{}i+1$

$\Delta(f)$

$\displaystyle n_{L}\times k^{\prime}\times\underbrace{\big{(}|x-A|+|x-A-B|\big% {)}}_{\geq B\text{ (Lemma \ref{l12})}}+n_{R}\times k^{\prime}\times\underbrace% {\big{(}|y-C|+|y-B-C|\big{)}}_{\geq B\text{ (Lemma \ref{l12})}}$

$i<\frac{{\mathcal{L}}}{2}+\frac{{n_{R}}(1-{\mathcal{R}})}{2{n_{L}}}$

$\epsilon_{2}\in\{0,w^{*}\}$

$\displaystyle\mathcal{E}(M)$

$|V|=n$

$V_{L}=\{u|(u,v_{1})\in E^{\prime}\},{\mathcal{L}}=|V_{L}|$

$e_{k+1}$

$|x-A-B|$

$n_{L}+n_{R}=n-2=\left|\overline{V_{m}}\right|$

$T_{i}^{L}$

$x,z$

$i={\mathcal{L}}$

$\epsilon>0$

$G_{1}$

$v_{1}$

$E^{\prime}\subseteq E$

$S_{R}^{\prime}\geq S_{L}^{\prime}$

$M$

$e^{*}$

$u$

$u_{1}\in T_{i}^{R},u_{2}\in T_{j}^{R}$

$y$

$\displaystyle|\Delta E|=$

$v_{i}$

$V_{L},V_{R}\subset V$

$\displaystyle=\mathcal{E}(M_{0})+(\epsilon_{1}+\epsilon_{2})\times\sum_{e_{i}% \in E_{L}}L_{i}\times w^{*}\times(S_{L}-L_{i}-S_{R})\xrightarrow[S_{L}-L_{i}-S% _{R}\leq 0]{\epsilon_{1}+\epsilon_{2}\leq 1}$

$\{u_{1},v_{1}\}$

$\Delta({\text{UNMARK\_RIGHT}})=R_{i}\times\bigg{(}-(S_{RM}-R_{i})-S_{RU}-S_{LM% }+S_{LU}\bigg{)}$

$(u,v)$

$\alpha_{1}=|x-A|+|x-A-B|$

$|z|\leq|x|+|z-x|\xrightarrow[]{}|z|-|x|\leq|z-x|$

$B<0$

$n_{R}\geq 0$

$21-7>1=R_{2}$

$v^{*}=\{v_{2},v_{3},\dots,v_{k+2}\}$

$w:E\rightarrow\mathbb{R}_{\geq 0}$

$e\in E$

$i=\{1,\dots,{\mathcal{L}}\}$

$\Delta_{1}({\text{MARK\_LEFT}})<0$

$0-\left|\sum_{k=i}^{j-1}\epsilon_{k}\right|$

$u,v\in G$

$\mathcal{E}_{R}=n_{R}\times\big{(}\underbrace{|y-w_{k+1}|}_{\text{between the % vertices of }V_{R}\text{ and }v_{k+2}}+\underbrace{|y-w_{k+1}-w_{k}|}_{\text{% between the vertices of }V_{R}\text{ and }v_{k+1}}+\dots+\underbrace{|y-w_{k+1% }-w_{k}-\dots-w_{1}|}_{\text{between the vertices of }V_{R}\text{ and }v_{2}}% \big{)}$

$V_{m}=\{v_{1},v_{2}\}$

$R_{i}\times R_{j}\times w^{*}$

$L_{i}\times L_{j}\times w^{*}$

$\displaystyle\underbrace{\mathcal{E}(M_{0})}_{\text{The error associated with % the empty marking}}+\underbrace{\epsilon_{1}\times\sum_{e_{i}\in E_{L}}L_{i}% \times w^{*}\times(S_{L}-L_{i}-S_{R})}_{\text{The sum of all }\Delta({\text{% MARK\_LEFT}})\text{'s by }\epsilon_{1}}$

$(u_{2i-1},u_{2i})$

$V_{R}=\{v_{i}|n_{1}+2\leq i\leq n_{2}+2\}$

$E_{R}$

$w:E\Rightarrow\mathbb{R}_{\geq 0}$

$x=A$

$\epsilon_{i}=0\;\;\forall i\neq n_{1}$