$E^{(v_{1},u_{5})}=\{e_{1},e^{*}_{1},e_{2},e_{3},e^{*}_{2},e_{4}\}$
$x=\sum_{k=i}^{n_{1}}\epsilon_{k}$
$v_{i},v_{j}\in V_{R}$
$G^{\prime}$
$c_{i+1},\dots,c_{k}$
$S_{R}-R_{i}-S_{L}\leq 0$
$n\geq 3$
$\underbrace{|w^{*}-(c_{i}\times w^{*}+c_{j}\times w^{*}-\epsilon\times w^{*})|% }_{=w^{*}-(c_{i}\times w^{*}+c_{j}\times w^{*}-\epsilon\times w^{*})\text{ % because }c_{i}+c_{j}\leq 1}-\underbrace{|w^{*}-(c_{i}\times w^{*}+c_{j}\times w% ^{*})|}_{=w^{*}-(c_{i}\times w^{*}+c_{j}\times w^{*})\text{ because }c_{i}+c_{% j}\leq 1}=\epsilon\times w^{*}$
$w_{i}=w(e_{i})\;\forall i\in\{0,\dots,k+1\}$
$u_{1}\in T_{1}^{L},u_{2}\in T_{2}^{L}$
$\pi$
$\displaystyle\mathcal{E}_{L}^{(i+1)}=$
$i\geq\frac{{\mathcal{L}}}{2}+\frac{{n_{R}}(1-{\mathcal{R}})}{2{n_{L}}}$
$\displaystyle\mathcal{E}(M)=$
$n_{L}n_{R}|x+y-A-B-C|$
$V^{\prime}\subset V$
$R_{i}={n_{R}},\;1\leq i\leq{\mathcal{R}}$
$\pi_{v_{i},u_{j+1}}=\pi_{v_{i},u_{j}}+w^{*}_{k}\text{, }\pi^{\prime}_{v_{i},u_% {j}}=\pi^{\prime}_{v_{i},u_{j+1}}\text{, and }\pi^{\prime\prime}_{v_{i},u_{j}}% =\pi^{\prime\prime}_{v_{i},u_{j+1}}$
$u_{1}\in T_{i}^{L},u_{2}\in T_{j}^{L}$
$\epsilon=0.4$
$e\in E_{m}$
$c_{i}$
$e_{i},w_{i}=w(e_{i})$
$\displaystyle\mathcal{E}^{(x $V_{m}=\{u_{1},\dots,u_{2k}\}$ $\displaystyle\underbrace{n_{L}\times n_{R}\times|x+y-A-B-C|}_{\text{between %
the subpath of }w_{1}\text{ and }w_{2}}$ $\mathcal{E}^{v_{i},u_{j}}_{2}=\left|\pi^{\prime\prime}_{v_{i},u_{j}}-\pi_{v_{i%
},u_{j}}\right|=\left|w^{*}_{k}\right|$ $c_{i}>0$ $d$