$\mathcal{E}_{L}^{(0)}$
$\Delta({\text{UNMARK\_LEFT}})=L_{i}\times\bigg{(}-(S_{LM}-L_{i})-S_{LU}-S_{RM}% +S_{RU}\bigg{)}=L_{i}\times\bigg{(}L_{i}-S_{L}+S_{R}\bigg{)}<0$
$|\overline{V_{m}}|=n-2|E_{m}|=n-2k$
$S_{LU}$
$\mathcal{E}_{L}^{(0)}=n_{L}\times\big{(}\sum_{j=1}^{k}(k+1-j)\;w_{j}\big{)}$
$k\leq\frac{n}{2}$
$e_{i}$
$\displaystyle=\mathcal{W}(E^{(v_{i},u_{j})})+\mathcal{W}^{*}(E^{(v_{i},u_{j})}% )+w^{*}_{k}$
$S_{RU}$
${n_{L}}{n_{R}}(i(j-1)-ij)={n_{L}}{n_{R}}\times(-i)$
$w(e^{*})$
$S_{R}^{\prime}=R_{2}\geq S_{L}^{\prime}=L_{2}+L_{3}$
$\mathcal{W}(E^{\prime})=\sum_{e\in E^{\prime}\cap\overline{E_{m}}}w(e),\;\;% \mathcal{W}^{*}(E^{\prime})=\sum_{e\in E^{\prime}\cap{E_{m}}}w(e),\;\;\mathcal% {W}^{\prime}(E^{\prime})=\sum_{e_{i}\in\overline{E_{m}}\cap E^{\prime}}% \epsilon_{i}$
$|\Delta E|=n_{L}\times k^{\prime}\times B=(n-(k+k^{\prime}))\times k^{\prime}\times B$
$S_{R}=\sum_{i=1}^{{\mathcal{R}}}R_{i}$
$\mathcal{E}$
$|w_{1}+w^{*}+w_{3}-w_{1}-w^{*}-w_{3}|=0$
$P_{n},n\geq 3$
$\displaystyle>n_{L}\times\big{(}\sum_{j=1}^{k}(k+1-j)w_{j}\big{)}\xrightarrow{% \text{See the proof of Lemma \ref{induction1}}}=\mathcal{E}^{(0)}_{L}>\mathcal% {E}^{(\frac{k}{2})}_{L}$
$e^{*}_{k}=(u_{j},u_{j+1})=e^{*}_{3}=(u_{5},u_{6})$
$n_{R}=0$
$\overline{V_{m}}=\{v^{\prime}_{1},v^{\prime}_{2},v^{\prime}_{3},v^{\prime}_{4}% ,v^{\prime}_{5},v^{\prime}_{6}\}$
${n_{L}}{n_{R}}\times(({\mathcal{L}}-i)({\mathcal{R}}-j+1)-({\mathcal{L}}-i)({% \mathcal{R}}-j))={n_{L}}{n_{R}}\times({\mathcal{L}}{\mathcal{R}}-{\mathcal{L}}% j+{\mathcal{L}}-i{\mathcal{R}}+ij-i-{\mathcal{L}}{\mathcal{R}}+{\mathcal{L}}j+% i{\mathcal{R}}-ij)={n_{L}}{n_{R}}\times({\mathcal{L}}-i)$
$w^{\prime}(e_{i})=w(e_{i})+\epsilon_{i},\;\forall e_{i}\in E,\;\epsilon_{i}\in% \mathbb{R}$
$0 $e_{i}\in E_{R}$ $\displaystyle|\Delta E|\geq$ $\epsilon\leq c_{i}$ $\Delta_{1}({\text{MARK\_LEFT}})=c_{1}\times(X)$ $A,B,C,D,x,y$ $(\frac{{\mathcal{L}}{n_{L}}+{n_{R}}(1-{\mathcal{R}})}{2{n_{L}}}-i)({n^{2}_{L}}%
\times({\mathcal{L}}-1)+{n_{L}}{n_{R}}(2j-{\mathcal{R}}))$ $|w_{1}+w_{2}+w_{3}+w^{*}-w_{1}-w_{2}-w_{3}|=w^{*}$ $v_{3}$ $w^{\prime}(e_{i})=w(e_{i})$ $v_{n_{1}+2}$ $e^{*}=(u,v)$ ${e^{*}}$ $e_{i}\in E_{L}$ $S_{RU}=S_{R}$ $n_{L}\times\big{(}(i+1)\;w_{i+1}\big{)}$ $c_{i}=\epsilon_{1}=0.4$ $+L_{i}\times S_{RM}$ $V_{m}=\{u_{1},v_{1}\}$ $R_{i}\times R_{j}\times 2w^{*}$ $\mathcal{E}^{(x $1\leq j\leq{\mathcal{R}}$ $\mathcal{E}(M^{\prime\prime})=\underbrace{\mathcal{E}(M^{\prime})+c_{1}\times X%
}_{=\mathcal{E}(M)}+(c_{2}-c_{1})\times X$ $X=L_{1}\times\bigg{(}S_{LM}+(S_{LU}-L_{1})+S_{RM}-S_{RU}\bigg{)}=L_{1}\times%
\bigg{(}S_{LM}+(S_{LU}-L_{1})-S_{R}\bigg{)}$ $|x-A|+|x-A-B|$ $\epsilon_{i}$ ${e^{*}}=(u,v)$ $c_{1}+c_{2}\leq 1$ $|a|=-a$ $v^{\prime}_{3}$ $u_{1},u_{2}\in\overline{V_{m}}$ $v_{j}\in V_{R},v_{j}\neq v_{n_{1}+2}$ $u_{j}$ $A+B+C$ $\pi_{v,u}$ $\pi^{\prime\prime}_{v,u}$ $\Delta({\text{UNMARK\_RIGHT}})\leq 0\text{ if }{n_{L}}({\mathcal{L}}-2i)\leq{n%
_{R}}({\mathcal{R}}-1)\xrightarrow[]{\text{Rearranging the terms}}i\geq\frac{{%
\mathcal{L}}}{2}+\frac{{n_{R}}(1-{\mathcal{R}})}{2{n_{L}}}$ $\epsilon$ $-\left|\sum_{k=i}^{j-1}\epsilon_{k}\right|$ $\displaystyle=\mathcal{W}(E^{(v_{i},u_{j})})+\mathcal{W}^{\prime}(E^{(v_{i},u_%
{j})})$ $S_{L}^{\prime}=S_{L}-L_{1}$ $w(e^{*}_{i})$ $e_{0}$ $y=w_{\frac{k}{2}+1}+w_{\frac{k}{2}+2}+\dots+w_{k+1}$ $\pi^{\prime}_{v,u}$ $\mathcal{E}_{LR}=E_{L}=0$ $x-A+x-A-B
$\epsilon_{2}$ $j\xleftarrow{}j-1$ $\Delta({\text{MARK\_RIGHT}})=R_{i}\times\bigg{(}S_{RM}+(S_{RU}-R_{i})+S_{LM}-S%
_{LU}\bigg{)}$ $H=G-\{e_{3}=(v^{\prime}_{3},u_{1}),e^{*}=(u_{1},v_{1}),e_{4}=(v_{1},v^{\prime}%
_{4})\}$ $R_{j}$ $S_{RU} $M_{R}^{*}$ $\Delta_{1}({\text{UNMARK\_LEFT}})=L_{i}\times\epsilon\times w^{*}\times(-(S_{L%
}-L_{i})+S_{R})=L_{i}\times\epsilon\times w^{*}\times(-S_{L}+L_{i}+S_{R})$ $P_{n}$ $\displaystyle\mathcal{E}_{L}^{(i)}+n_{L}\times\big{(}(i+1)\;w_{i+1}-(k-i)\;w_{%
i+1}\big{)}$ $T$ $e^{*}_{k}\in E_{m}$ $G_{2}$ $S_{RU}>S_{LU}$ $\Delta({\text{UNMARK\_RIGHT}})={n^{2}_{R}}(-2(j-1)+2j-{\mathcal{R}}-1)+{n_{L}}%
{n_{R}}({\mathcal{L}}-i-i)={n^{2}_{R}}(1-{\mathcal{R}})+{n_{L}}{n_{R}}({%
\mathcal{L}}-2i)$ $w_{1}+w_{2}+w_{3}+w^{*}$ $\left|\sum_{k=i}^{j-1}(w_{k}+\epsilon_{k})-\sum_{k=i}^{j-1}w_{k}\right|=\left|%
\sum_{k=i}^{j-1}\epsilon_{k}\right|$ $v_{i}=v_{1}$ $n_{L}=\left|\{v|v\in G_{1}\}\right|,n_{R}=\left|\{v|v\in G_{2}\}\right|$ $\displaystyle=\mathcal{W}(E^{(v_{i},u_{j})})+\mathcal{W}^{*}(E^{(v_{i},u_{j})})$ $\mathcal{E}_{L}^{(i+1)}-\mathcal{E}_{L}^{(i)}<0$ $\displaystyle(n_{L}+n_{R})B=(n-2)B=|\overline{V_{m}}|B$ $M_{L}$ $M_{R}^{*}\xleftarrow[]{}M_{R}^{*}\cup\{e_{i}\}$ $S_{LM}$ $e=e_{3}$