$\alpha_{2}=|y-C|+|y-B-C|$
$v_{j}\in V_{R}$
$\displaystyle{n^{2}_{L}}\times{\mathcal{L}}({\mathcal{L}}-1)-{n^{2}_{R}}\times% {\mathcal{R}}({\mathcal{R}}-1)$
$u_{6}$
$\alpha_{2}=B$
$w_{1}+w_{2}=\sum_{k=1}^{2}w_{k}$
$R_{i}$
$k+1$
$\mathcal{E}_{L}^{(\frac{k}{2})}+(\frac{k}{2}+1)\;\epsilon-(\frac{k}{2})\;% \epsilon>\mathcal{E}_{L}^{(\frac{k}{2})}$
$w^{\prime}(e)=w(e)$
$i<{\mathcal{L}}$
$\mathcal{C},\;\mathcal{C}:V_{s}\rightarrow\mathbb{N},$
$v_{6}$
$\Delta_{1}({\text{UNMARK\_LEFT}})\geq 0$
$L_{1}\times R_{1}\times w^{*}$
$v_{4}$
$\mathcal{W}(E^{(v_{1},u_{5})})=w_{1}+w_{2}+w_{3}+w_{4}$
$k=k^{\prime}=1$
$n_{L}=0$
$w(e_{i})$
$\Delta(\text{UNMARK\_RIGHT})\leq 0$
$\Delta({\text{MARK\_LEFT}})=L_{i}\times\bigg{(}S_{LM}+(S_{LU}-L_{i})+S_{RM}-S_% {RU}\bigg{)}$
$\alpha_{1}=A-x+A+B-x
$c_{1}+c_{2}<1+\epsilon=c_{1}+c_{2}$
$M^{*}$
$\mathcal{E}(M)$
$n_{L}+n_{R}=n-(k+k^{\prime})$
$\mathcal{O}(|V|)$
$e^{\prime}$
$S_{L}-S_{R}\leq L_{i}$
$B\times k^{\prime}\times(n-(k+k^{\prime}))$
$e\in S$
$1\leq i\leq{\mathcal{L}}$
$e_{2}$
$\mathcal{E}(M^{\prime})\leq\mathcal{E}(M)$
$-S_{L}+L_{i}+S_{R}\geq 0\xrightarrow{}L_{i}\geq S_{L}-S_{R}$
$\displaystyle n_{L}\times k^{\prime}\times B$
$e_{j}$
$\frac{{\mathcal{L}}}{2}+\frac{{n_{R}}(1-{\mathcal{R}})}{2{n_{L}}}-i=\frac{{% \mathcal{L}}{n_{L}}+{n_{R}}(1-{\mathcal{R}})}{2{n_{L}}}-i$
$\displaystyle\pi^{\prime}_{v_{i},u_{j}}$
$w^{\prime}\left(e_{i}\right)=w\left(e_{i}\right)+c_{i}w\left(e^{*}\right)$
$i $w^{\prime}$ $u_{1}$ $u,v\in V,$ $E_{m}$ $\displaystyle(k-k^{\prime})\times n_{L}\times|x-A|+n_{L}\times k^{\prime}%
\times\big{(}|x-A|+|x-A-B|\big{)}$ $\displaystyle\underbrace{|w_{2}-(w_{2}+\epsilon_{2})|}_{\text{between }u\text{%
and }v_{1}}+\underbrace{|w_{2}+w^{*}-(w_{2}+\epsilon_{2})|}_{\text{between }u%
\text{ and }v_{2}}=|\epsilon_{2}|+|w^{*}-\epsilon_{2}|=|\epsilon_{2}|+|%
\epsilon_{2}-w^{*}|$ $n_{1}=n_{L}$ $T^{L}_{1}$ $-\epsilon\times w^{*}$ $V_{m}$ $B$ $V$ $|\Delta E|\geq B(n-2)+n_{L}n_{R}|x+y-A-B-C|\geq B(n-2)=|\overline{V_{m}}|B$ $e^{*}=(u_{1},v_{1})$ $e=(u,w_{2})$ $A\leq x\leq A+B$ $T=(V,E)$ $\epsilon_{1}$ $|V|$ $\mathcal{E}_{L}^{(i)}$ $c^{\prime}_{i}=c_{i}+\epsilon$ $R_{1}\times R_{2}\times w^{*}$ $e^{*}=(u_{1},v_{1}),w^{*}=w(e^{*})$ $|z|-|x|\leq|z-x|$ $|x|=-x$ ${\mathcal{R}}\xleftarrow[]{}|E_{R}|$ $V_{L}=\{v_{3},v_{4}\}$ $\displaystyle|\Delta E|=\underbrace{n_{L}\times|x-A|\times k}_{\text{between %
the subpath of }w_{1}\text{ and the vertices in }v}+\underbrace{n_{L}\times|x-%
A-B|\times k^{\prime}}_{\text{between the subpath of }w_{1}\text{ and the %
vertices in }u}+$ $\displaystyle\frac{{\mathcal{L}}{n_{L}}-{n_{R}}(1-{\mathcal{R}})}{2{n_{L}}}({n%
^{2}_{L}}\times({\mathcal{L}}-1)+{n_{L}}{n_{R}}(-{\mathcal{R}}))$ $|w^{*}|-\left|w^{*}-\sum_{k=n_{1}+1}^{j-2}\epsilon_{k}\right|\leq\left|\sum_{k%
=n_{1}+1}^{j-2}\epsilon_{k}\right|$ $\left|w^{*}-\sum_{k=i}^{n_{1}}\epsilon_{k}\right|$ $0\leq j\leq k$ $e^{*}=(v_{n_{1}+1},v_{n_{1}+2}$ $L_{i}\times L_{j}\times 2w^{*}$ $i=\{1,\dots,{\mathcal{R}}\}$ $e_{i}\in\overline{E_{m}}=E-E_{m}$ $R_{i}\times S_{LU}$ $\overline{V_{m}}$ $c_{j}$ $R_{1}$ ${n^{2}_{L}}\times 2\bigg{(}{i+1\choose 2}-{i\choose 2}\bigg{)}={n^{2}_{L}}%
\times 2i$ $i=\frac{{\mathcal{L}}{n_{L}}+{n_{R}}(1-{\mathcal{R}})}{2{n_{L}}}$ $\begin{array}[]{cc}\Delta({\text{MARK\_LEFT}})\leq 0\xrightarrow[]{}{n^{2}_{L}%
}\times({\mathcal{L}}-1)+{n_{L}}{n_{R}}(2j-{\mathcal{R}})&\leq 0\\
\end{array}$ $\displaystyle n_{L}\times\big{(}\sum_{j=0}^{i+1}j\;w_{j}+\sum_{j=i+2}^{k}(k+1-%
j)\;w_{j}\big{)}$ $\{e_{1},\dots,e_{k}\}$ $e^{\prime}\neq e^{*}$ $w_{1}+\epsilon_{1}+w_{2}+\epsilon_{2}=\sum_{k=1}^{2}(w_{k}+\epsilon_{k})$ $e^{*}_{k}=(u_{j},u_{j+1})\in E_{m}$ $n_{L}=n_{R}$ $\Delta(\text{MARK\_LEFT})\leq 0$ $e^{*}_{j}$ $\alpha_{1}
$|w^{*}|-\left|\sum_{k=i}^{n_{1}}\epsilon_{k}\right|$ $i+1$ $\Delta_{v_{i},u_{j+1}}=\mathcal{E}^{v_{i},u_{j+1}}_{2}-\mathcal{E}^{v_{i},u_{j%
+1}}_{1}=-\left|w^{*}_{k}+\mathcal{W}^{*}(E^{(v_{i},u_{j})})-\mathcal{W}^{%
\prime}(E^{(v_{i},u_{j})})\right|$ $v_{i},v_{j}\in V_{L}(i $w^{\prime}:E\rightarrow\mathbb{R}_{\geq 0}$ $x=\epsilon+\sum_{j=0}^{\frac{k}{2}}w_{j}$