$c^{\prime}_{i}=c_{j}$
$\mathcal{W}^{*}(E^{(v_{1},u_{5})})=w^{*}_{1}+w^{*}_{2}$
$|w_{1}+w^{*}+w_{2}+w^{*}-w_{1}-w_{2}|=2w^{*}$
$e_{i}\in E_{m},1\leq i\leq k$
$|w^{*}|$
$P^{{}^{\prime}}\subseteq P$
$P^{\prime}\subseteq P$
$k-i$
$c_{1}+c_{2}>1$
$c_{j}>0$
$e_{1},e_{2}$
$\displaystyle\pi^{\prime\prime}_{v_{i},u_{j}}$
$n_{R}(|y-C|+|y-B-C|)$
$\operatorname{min}(\mathcal{E}(M_{R}^{*}),\mathcal{E}(M_{L}^{*}))=\mathcal{E}(% M_{L}^{*})$
$i\xleftarrow{}i$
$\displaystyle\leq$
$\mathcal{E}_{L}=n_{L}\times\big{(}\underbrace{|x-w_{0}|}_{\text{between the % vertices of }V_{L}\text{ and }v_{2}}+\underbrace{|x-w_{0}-w_{1}|}_{\text{% between the vertices of }V_{L}\text{ and }v_{3}}+\dots+\underbrace{|x-w_{0}-w_% {1}-\dots-w_{k}|}_{\text{between the vertices of }V_{L}\text{ and }v_{k+2}}% \big{)}$
${n^{2}_{L}}\times{\mathcal{L}}({\mathcal{L}}-1)\leq{n^{2}_{R}}\times{\mathcal{% R}}({\mathcal{R}}-1)$
$M_{L}^{*}$
${n_{L}}\times{n_{L}}\times 2w^{*}$
$M^{\prime\prime}$
$f\in\mathcal{F}=\{{\text{MARK\_LEFT}},{\text{UNMARK\_LEFT}},{\text{MARK\_RIGHT% }},{\text{UNMARK\_RIGHT}}\}$
$7-21\leq 2=L_{2}$
$\displaystyle n_{L}\times\big{(}\sum_{j=0}^{i}j\;w_{j}+\sum_{j=i+1}^{k}(k+1-j)% \;w_{j}+(i+1)\;w_{i+1}-(k-i)\;w_{i+1}\big{)}$
$x=w_{0}+w_{1}+\dots+w_{i}$
$x>w_{0}+\dots+w_{k}$
$L_{1}\times L_{2}\times w^{*}$
$e_{2}=(v_{1},v_{4})$
$e_{1}$
$H$
$S_{L}-L_{i}-S_{R}\leq 0\xrightarrow[]{}S_{L}-S_{R}\leq L_{i}$
$j>\frac{{\mathcal{R}}}{2}+\frac{{n_{L}}(1-{\mathcal{L}})}{2{n_{R}}}$
$\mathcal{E}(M)=\mathcal{E}(M^{\prime})+\Delta_{1}({\text{MARK\_LEFT}})$
$w_{i}$
$u,v$
$v_{5}$
$n_{2}=n_{R}$
$u\in G_{2}$
$e_{i}\in E$
$\frac{\mathcal{E}^{(\frac{k}{2})}_{L}}{n_{L}}$
$\alpha_{2}$
$w(e^{\prime})\xleftarrow[]{}w(e^{\prime})+w(e)$
$V_{L}=\{v_{i}|1\leq i\leq n_{1}+1\}$
$\mathcal{E}_{L}^{(i)}=n_{L}\times\big{(}\sum_{j=0}^{i}j\;w_{j}+\sum_{j=i+1}^{k% }(k+1-j)\;w_{j}\big{)}$
$n_{L}\times\big{(}(k-i)\;w_{i+1}\big{)}$
${T_{i}^{L}},i\in\{1,2\}$
$\mathcal{W}^{\prime}(E^{\prime})$
$e^{\prime}\in E_{m}$
$\displaystyle n_{L}\times n_{R}\times|x+y-A-B-C|$
$M^{*}\xleftarrow[]{}\operatorname{argmin}(\mathcal{E}(M_{L}^{*}),\mathcal{E}(M% _{R}^{*}))$
$u,v\in G_{2}$
$\Delta({\text{UNMARK\_LEFT}})=L_{i}\times\bigg{(}-(S_{LM}-L_{i})-S_{LU}-S_{RM}% +S_{RU}\bigg{)}$
$\mathcal{E}(M^{\prime\prime})<\mathcal{E}(M)$
$L_{i}=n_{L},\;1\leq i\leq{\mathcal{L}}$
$u\in G_{1}$
$|w^{*}|-\left|\sum_{k=i}^{n_{1}}\epsilon_{k}\right|\leq\left|w^{*}-\sum_{k=i}^% {n_{1}}\epsilon_{k}\right|$
$\beta\geq 0$
${T_{j}^{R}},j\in\{1,\dots,{\mathcal{R}}\}$
$\Delta({\text{UNMARK\_LEFT}})$
$\displaystyle B\times k^{\prime}\times\underbrace{(n_{L}+n_{R})}_{=n-(k+k^{% \prime})}=B\times k^{\prime}\times(n-(k+k^{\prime}))$
$P^{\prime}\subset P$
$0\leq i\leq k$
$e_{i},e_{j}$
$C\leq y\leq B+C$
$c_{i}\neq c_{j}$
$\alpha_{1}=B$
$x-A-B$
$\displaystyle\xrightarrow{\text{setting }x=A+B,y=C}=$
$v\in V_{s}$
$\mathcal{E}_{1}$
$L_{1}$
$X<0$
$V_{s}$
$|w^{*}-(c_{2}\times w^{*}+c_{j}\times w^{*}-\epsilon\times w^{*})|-|w^{*}-(c_{% 2}\times w^{*}+c_{j}\times w^{*})|\leq\epsilon\times w^{*}$
$e^{*}\in S$
$c^{\prime}_{2}=c_{2}-\epsilon$
$f\in\mathcal{F}=\{\text{MARK\_LEFT},\text{UNMARK\_RIGHT}\}$
$S_{RM}$
$|w_{1}+w^{*}+w_{3}+w^{*}-w_{1}-w^{*}-w_{3}|=w^{*}$
$M_{L}^{*}\xleftarrow[]{}M_{L}^{*}\cup\{e_{i}\}$
$\begin{array}[]{cc}\Delta_{1}({\text{UNMARK\_RIGHT}})\leq R_{1}\times\epsilon%
\times w^{*}\times\bigg{(}-S_{R}^{\prime}\underbrace{-L_{1}}_{<0}+S_{L}^{%
\prime}\bigg{)}& $\mathcal{E}^{v_{i},u_{j}}_{1}=\left|\pi_{v_{i},u_{j}}-\pi^{\prime}_{v_{i},u_{j%
}}\right|=\left|\pi^{\prime}_{v_{i},u_{j}}-\pi_{v_{i},u_{j}}\right|=\left|%
\mathcal{W}^{\prime}(E^{(v_{i},u_{j})})-\mathcal{W}^{*}(E^{(v_{i},u_{j})})\right|$ $\alpha_{1}=x-A+A+B-x
$(u,v),\;\;u\in V_{m},\;v\in\overline{V_{m}}$ $w_{1}$ $|\Delta E|\geq B(n_{L}+n_{R})+n_{L}n_{R}|x+y-A-B-C|$ $v^{\prime}_{1}$ $\operatorname{d}_{G^{\prime}}(u,v)\geq\varphi\left(\operatorname{d}_{G}(u,v)\right)$ $S\xleftarrow[]{}E_{m}$ $\mathcal{E}^{v_{i},u_{j+1}}_{1}=\left|\pi_{v_{i},u_{j+1}}-\pi^{\prime}_{v_{i},%
u_{j+1}}\right|=\left|\pi_{v_{i},u_{j}}+w^{*}_{k}-\pi^{\prime}_{v_{i},u_{j}}%
\right|=\left|w^{*}_{k}+\mathcal{W}^{*}(E^{(v_{i},u_{j})})-\mathcal{W}^{\prime%
}(E^{(v_{i},u_{j})})\right|$ $7-21\leq 3=L_{3}$ ${n^{2}_{R}}\times 2\big{(}{j-1\choose 2}-{j\choose 2}\big{)}={n^{2}_{R}}\times%
(-2(j-1))$ $\mathcal{E}_{LR}=0$ $w^{\prime}(e_{i})=w(e_{i})+\epsilon_{i},\epsilon_{i}\in[0,w^{*}]$ $\displaystyle+$ $i+1-k+i<0\xrightarrow[]{}2i $|x-A|$ $\alpha_{1}$ $V_{m}=\{v_{2},v_{3}\}$ $\Delta({\text{MARK\_LEFT}})={n^{2}_{L}}\times(2i+{\mathcal{L}}-2i-1)+{n_{L}}{n%
_{R}}(j+j-{\mathcal{R}})={n^{2}_{L}}\times({\mathcal{L}}-1)+{n_{L}}{n_{R}}(2j-%
{\mathcal{R}})$