|
<!DOCTYPE html> |
|
<html> |
|
<head> |
|
<title>MathJax Example</title> |
|
<script> |
|
MathJax = { |
|
tex: { |
|
inlineMath: [['$', '$'], ['\(', '\)']] |
|
}, |
|
svg: { |
|
fontCache: 'global' |
|
} |
|
}; |
|
</script> |
|
<script id="MathJax-script" async src="https://cdn.jsdelivr.net/npm/mathjax@3/es5/tex-mml-chtml.js"></script> |
|
</head> |
|
<body> |
|
<p> $T_{i}$ </p> |
|
<p> $\operatorname{\bm{\theta}}_{\text{agent}}$ </p> |
|
<p> $\operatorname{\bm{\theta}}_{(\cdot)}^{(t+1)}$ </p> |
|
<p> $2.41$ </p> |
|
<p> $5-20\%$ </p> |
|
<p> $50$ </p> |
|
<p> $\mathbf{W}\in\mathbb{R}^{d\times d}$ </p> |
|
<p> $46.55$ </p> |
|
<p> $16$ </p> |
|
<p> $p(\operatorname{\mathbf{d}}|\operatorname{\bm{\theta}}_{\text{client}}^{(t)},% |
|
\operatorname{\bm{\theta}}_{\text{agent}}^{(t)},\operatorname{\mathbf{pr}}_{% |
|
\text{agent}},\operatorname{\mathbf{pr}}_{\text{client}})$ </p> |
|
<p> $\tau\approx 0.67$ </p> |
|
<p> $\underset{\pm 6.21}{273.71}$ </p> |
|
<p> $\alpha=0.9$ </p> |
|
<p> $2.15$ </p> |
|
<p> $0.67$ </p> |
|
<p> $0.97$ </p> |
|
<p> $40$ </p> |
|
<p> $0.92$ </p> |
|
<p> $5\%$ </p> |
|
<p> $\mathbf{2.54}$ </p> |
|
<p> $\bigstar$ </p> |
|
<p> $0.29$ </p> |
|
<p> $0.27$ </p> |
|
<p> $0.87$ </p> |
|
<p> $303.65$ </p> |
|
<p> $\mathcal{V}$ </p> |
|
<p> $46.62$ </p> |
|
<p> $\tau$ </p> |
|
<p> $0.93$ </p> |
|
<p> $49.40$ </p> |
|
<p> $3$ </p> |
|
<p> $0.05$ </p> |
|
<p> $0.33$ </p> |
|
<p> $n=9$ </p> |
|
<p> $p=0.95$ </p> |
|
<p> $285.94$ </p> |
|
<p> $5\%-20\%$ </p> |
|
<p> $\mathbf{0.81}$ </p> |
|
<p> $2.37$ </p> |
|
<p> $343.07$ </p> |
|
<p> $5\times 10^{-4}$ </p> |
|
<p> $\underset{\pm 0.03}{0.24}$ </p> |
|
<p> $200$ </p> |
|
<p> $\Delta\mathbf{W}\in\mathbb{R}^{d\times d}$ </p> |
|
<p> $0.22$ </p> |
|
<p> $\underset{\pm 0.02}{0.37}$ </p> |
|
<p> $0.30$ </p> |
|
<p> $l_{1}$ </p> |
|
<p> $5$ </p> |
|
<p> $\varnothing$ </p> |
|
<p> $r\ll d$ </p> |
|
<p> $\underset{\pm 0.00}{0.77}$ </p> |
|
<p> $0.63$ </p> |
|
<p> $45.51$ </p> |
|
<p> $\underset{\pm 0.01}{0.62}$ </p> |
|
<p> $2.$ </p> |
|
<p> $2.56$ </p> |
|
<p> $\mathcal{D}^{(t)}_{\bigtriangledown}\subseteq\mathcal{D}^{(t)}$ </p> |
|
<p> $373.87$ </p> |
|
<p> $20$ </p> |
|
<p> $37\%$ </p> |
|
<p> $1$ </p> |
|
<p> $280.53$ </p> |
|
<p> $\approx 1.95\times 10^{-8}$ </p> |
|
<p> $0.5$ </p> |
|
<p> $\mathbf{B}\in\mathbb{R}^{r\times d}$ </p> |
|
<p> $0.38$ </p> |
|
<p> $266.77$ </p> |
|
<p> $\operatorname{\mathbf{pr}}_{\text{agent}}$ </p> |
|
<p> $\uparrow$ </p> |
|
<p> $\operatorname{\bm{\theta}}_{\text{agent}}^{(t)}$ </p> |
|
<p> $1-2\%$ </p> |
|
<p> $1\%-5\%$ </p> |
|
<p> $0.64$ </p> |
|
<p> $0.98$ </p> |
|
<p> $10042$ </p> |
|
<p> $0.35$ </p> |
|
<p> $2.22$ </p> |
|
<p> $\mathbf{355.44}$ </p> |
|
<p> $k=50$ </p> |
|
<p> $6$ </p> |
|
<p> $0.41$ </p> |
|
<p> $2.31$ </p> |
|
<p> $500k$ </p> |
|
<p> $10\%$ </p> |
|
<p> $54.14$ </p> |
|
<p> $\mathcal{G}=\{\mathcal{V},\mathcal{E}\}$ </p> |
|
<p> $28$ </p> |
|
<p> $\mathcal{D}^{(t)}=\{\operatorname{\mathbf{d}}_{1}^{(t)},\ldots,\operatorname{% |
|
\mathbf{d}}_{N}^{(t)}\}$ </p> |
|
<p> $0.82$ </p> |
|
<p> $5\times 10^{-5}$ </p> |
|
<p> $\kappa\approx 0.52$ </p> |
|
<p> $0.00$ </p> |
|
<p> $0.39$ </p> |
|
<p> $2.11$ </p> |
|
<p> $0.32$ </p> |
|
<p> $15$ </p> |
|
<p> $0.99$ </p> |
|
<p> $44.91$ </p> |
|
<p> $\Delta\mathbf{W}=\mathbf{AB}$ </p> |
|
|
|
</body> |
|
</html> |
|
|