File size: 4,443 Bytes
f75fd5e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
<!DOCTYPE html>
<html>
<head>
    <title>MathJax Example</title>
    <script>
      MathJax = {
        tex: {
          inlineMath: [['$', '$'], ['\(', '\)']]
        },
        svg: {
          fontCache: 'global'
        }
      };
    </script>
    <script id="MathJax-script" async src="https://cdn.jsdelivr.net/npm/mathjax@3/es5/tex-mml-chtml.js"></script>
</head>
<body>
        <p> $O(n^{2})$ </p>
    <p> $f$ </p>
    <p> $n$ </p>
    <p> $G(v)$ </p>
    <p> $s_{o}\oplus s_{a}\in\mathbb{V}^{n+m}$ </p>
    <p> $Z\in\mathbb{R}^{m\times d_{\text{token}}}$ </p>
    <p> $E_{\psi}(s)$ </p>
    <p> $\displaystyle=F^{i}(E_{\psi}(s_{o})\oplus\text{Proj}_{\psi}(Z)).$ </p>
    <p> $\displaystyle\cos(v,v_{t}^{image})+\lambda\cos(v,v_{t}^{text})$ </p>
    <p> $\cos(\psi_{i},\psi_{j})$ </p>
    <p> ${}^{4}$ </p>
    <p> $v_{t}^{text}=F^{t}(E_{\psi}(s^{\prime}))$ </p>
    <p> ${}^{*}$ </p>
    <p> $\displaystyle\text{argmax}_{Z}$ </p>
    <p> $\rightarrow$ </p>
    <p> $\mathcal{A}(x,t,s_{o})$ </p>
    <p> $\displaystyle=F^{i}(E_{\psi}(s_{o}\oplus s_{a}))$ </p>
    <p> ${}^{1}$ </p>
    <p> $\text{Proj}_{\psi}(Z)_{i}=Z_{i}+\text{sg}(\psi_{j}-Z_{i})$ </p>
    <p> $x_{t}$ </p>
    <p> $500\times 20=10000$ </p>
    <p> $w_{i},w_{j}$ </p>
    <p> $v_{t}^{image}\leftarrow F^{i}(x_{t})$ </p>
    <p> $m=4$ </p>
    <p> $s_{a}=E_{\psi}^{-1}(\text{Proj}_{\psi}(Z))$ </p>
    <p> ${}^{5}$ </p>
    <p> $Z_{i}$ </p>
    <p> ${}^{1,*}$ </p>
    <p> $\text{Proj}_{\psi}(Z)$ </p>
    <p> $s$ </p>
    <p> $\displaystyle\text{argmax}_{s_{a}}$ </p>
    <p> $t$ </p>
    <p> $s^{\prime}\leftarrow$ </p>
    <p> $v_{t}^{image}$ </p>
    <p> $5\times 4\times 100=2000$ </p>
    <p> ${}^{1,2}$ </p>
    <p> $\psi\in\mathbb{R}^{|\mathbb{V}|\times d_{\text{token}}}$ </p>
    <p> $bestloss\leftarrow\mathcal{L},bestZ\leftarrow Z$ </p>
    <p> $G$ </p>
    <p> $\lambda=0$ </p>
    <p> $\text{Proj}_{\psi}:\mathbb{R}^{m\times d_{\text{token}}}\rightarrow\mathbb{R}^%
{m\times d_{\text{token}}}$ </p>
    <p> $i\leftarrow 1$ </p>
    <p> $s\in\mathbb{V}^{*}$ </p>
    <p> $\displaystyle\text{argmax}_{s_{a}}\mathbb{E}_{x\sim G(F^{t}(E_{\psi}(s_{o}%
\oplus s_{a})))}\mathcal{A}(x,t,s_{o})~{},$ </p>
    <p> $\displaystyle\cos(v,v_{t}^{image})+\lambda\cos(v,v_{t}^{text}),$ </p>
    <p> $\cos(a,b)=\frac{a^{T}b}{\|a\|\|b\|}$ </p>
    <p> $\eta$ </p>
    <p> $512\times 512$ </p>
    <p> $x$ </p>
    <p> $E_{\psi}(s_{o}\oplus s_{a})=E_{\psi}(s_{o})\oplus E_{\psi}(s_{a})$ </p>
    <p> $N$ </p>
    <p> $bestloss>\mathcal{L}$ </p>
    <p> $v_{t}^{image}=F^{i}(x_{t})$ </p>
    <p> $d_{\text{emb}}$ </p>
    <p> $\displaystyle\text{argmax}_{s_{a}}\cos(F^{i}(E_{\psi}(s_{o}\oplus s_{a})),v_{t%
}).$ </p>
    <p> $s^{\prime}=$ </p>
    <p> ${}^{3,*}$ </p>
    <p> $Z\leftarrow Z-\eta\nabla_{Z}\mathcal{L}$ </p>
    <p> $100$ </p>
    <p> $s_{a}$ </p>
    <p> $s_{o}\oplus s_{a}$ </p>
    <p> $m$ </p>
    <p> $v$ </p>
    <p> $\displaystyle\text{s.t.}\quad v=F^{i}(E_{\psi}(s_{o}\oplus s_{a})),$ </p>
    <p> $\mathbb{V}=\{w_{1},w_{2},\cdots,w_{|\mathbb{V}|}\}$ </p>
    <p> $F^{i}$ </p>
    <p> $\psi$ </p>
    <p> $\displaystyle\text{s.t.}\quad v$ </p>
    <p> $s_{o}$ </p>
    <p> $F^{t}$ </p>
    <p> ${}^{2}$ </p>
    <p> $\oplus$ </p>
    <p> $E_{\psi}(s)_{i}=\psi_{j}$ </p>
    <p> $5\times 4=20$ </p>
    <p> $3\times 100$ </p>
    <p> ${}^{3}$ </p>
    <p> $v\leftarrow F^{t}(E_{\psi}(s_{o})\oplus\text{Proj}_{\psi}(Z))$ </p>
    <p> $\mathcal{L}=-\cos(v,v_{t}^{image})-\lambda\cos(v,v_{t}^{text})$ </p>
    <p> $s_{o}\in\mathbb{V}^{n}$ </p>
    <p> $s_{a}\leftarrow E_{\psi}^{-1}(\text{Proj}_{\psi}(bestZ))$ </p>
    <p> $bestloss\leftarrow\infty,bestZ\leftarrow Z$ </p>
    <p> $\displaystyle=F^{i}(E_{\psi}(s_{o}\oplus E_{\psi}^{-1}(\text{Proj}_{\psi}(Z))))$ </p>
    <p> $t\in\mathbb{V}$ </p>
    <p> $Z$ </p>
    <p> $(\cdot)$ </p>
    <p> $x\sim G(v)$ </p>
    <p> $d_{\text{token}}$ </p>
    <p> $s_{a}\in\mathbb{V}^{m}$ </p>
    <p> $v_{t}$ </p>
    <p> $\lambda$ </p>
    <p> $\mathbb{V}$ </p>
    <p> $w_{j}=s_{i}$ </p>
    <p> $t\in\mathcal{V}$ </p>
    <p> $x\sim G(F^{t}(E_{\psi}(s)))$ </p>
    <p> $E_{\psi}$ </p>
    <p> $j=\text{argmin}_{j^{\prime}}\|\psi_{j^{\prime}}-Z_{i}\|_{2}^{2}$ </p>
    <p> $|s|\times d_{\text{token}}$ </p>
    <p> $\displaystyle\text{argmax}_{v_{t}}\mathbb{E}_{x\sim G(v_{t})}\mathcal{A}(x,t,s%
_{o})~{}.$ </p>
    <p> $E_{L}\cup E_{R}$ </p>
    <p> $E_{L}=\{(u,w)|(u,w)\in E,w\neq v\}$ </p>

</body>
</html>