Datasets:

Modalities:
Image
Video
Languages:
English
Size:
< 1K
Libraries:
Datasets
License:
360Motion-Dataset / vis_trajectory.py
lemonaddie's picture
Upload 6 files
a50a70d verified
raw
history blame
4.42 kB
import trimesh
import numpy as np
import imageio
import copy
import cv2
import os
from glob import glob
import open3d
from multiprocessing import Pool
import json
from utils import *
if __name__ == '__main__' :
H = 480
W = 720
intrinsics = np.array([[1000.,0.],
[0., 1000.]])
cam_path = "traj_vis/Hemi12_transforms.json"
location_path = "traj_vis/location_data_desert.json"
video_name = "D_loc1_61_t3n13_003d_Hemi12_1.json"
with open(location_path, 'r') as f: locations = json.load(f)
locations_info = {locations[idx]['name']:locations[idx] for idx in range(len(locations))}
location_name = video_name.split('_')[1]
location_info = locations_info[location_name]
translation = location_info['coordinates']['CameraTarget']['position']
vis_all = []
# vis cam
with open(cam_path, 'r') as file:
data = json.load(file)
cam_poses = []
for i, key in enumerate(data.keys()):
if "C_" in key:
cam_poses.append(parse_matrix(data[key]))
cam_poses = np.stack(cam_poses)
cam_poses = np.transpose(cam_poses, (0,2,1))
cam_poses[:,:3,3] /= 100.
relative_pose = np.linalg.inv(cam_poses[0])
cam_num = len(cam_poses)
for idx in range(cam_num):
cam_pose = cam_poses[idx]
cam_pose = cam_pose[:, [1,2,0,3]]
cam_pose = relative_pose @ cam_pose
cam_points_vis = get_cam_points_vis(W, H, intrinsics, cam_pose, [0.4, 0.4, 0.4], frustum_length=1.)
vis_all.append(cam_points_vis)
# vis gt obj poses
start_frame_ind = 10
sample_n_frames = 77
frame_indices = np.linspace(start_frame_ind, start_frame_ind + sample_n_frames - 1, sample_n_frames, dtype=int)
with open('traj_vis/'+video_name, 'r') as file:
data = json.load(file)
obj_poses = []
for i, key in enumerate(data.keys()):
obj_poses.append(parse_matrix(data[key][0]['matrix']))
obj_poses = np.stack(obj_poses)
obj_poses = np.transpose(obj_poses, (0,2,1))
obj_poses[:,:3,3] -= translation
obj_poses[:,:3,3] /= 100.
obj_poses = obj_poses[:, :, [1,2,0,3]]
obj_poses = relative_pose @ obj_poses
obj_poses = obj_poses[frame_indices]
obj_num = len(obj_poses)
for idx in range(obj_num):
obj_pose = obj_poses[idx]
if idx % 5 == 0:
cam_points_vis = get_cam_points_vis(W, H, intrinsics, obj_pose, [0.8, 0., 0.], frustum_length=0.5)
vis_all.append(cam_points_vis)
if len(data[key])>=2:
with open('traj_vis/'+video_name, 'r') as file:
data = json.load(file)
obj_poses = []
for i, key in enumerate(data.keys()):
obj_poses.append(parse_matrix(data[key][1]['matrix']))
obj_poses = np.stack(obj_poses)
obj_poses = np.transpose(obj_poses, (0,2,1))
obj_poses[:,:3,3] -= translation
obj_poses[:,:3,3] /= 100.
obj_poses = obj_poses[:, :, [1,2,0,3]]
obj_poses = relative_pose @ obj_poses
obj_poses = obj_poses[frame_indices]
obj_num = len(obj_poses)
for idx in range(obj_num):
obj_pose = obj_poses[idx]
if (idx % 5 == 0) :
cam_points_vis = get_cam_points_vis(W, H, intrinsics, obj_pose, [0., 0.8,0.], frustum_length=0.5)
vis_all.append(cam_points_vis)
if len(data[key])>=3:
with open('traj_vis/'+video_name, 'r') as file:
data = json.load(file)
obj_poses = []
for i, key in enumerate(data.keys()):
obj_poses.append(parse_matrix(data[key][2]['matrix']))
obj_poses = np.stack(obj_poses)
obj_poses = np.transpose(obj_poses, (0,2,1))
obj_poses[:,:3,3] -= translation
obj_poses[:,:3,3] /= 100.
obj_poses = obj_poses[:, :, [1,2,0,3]]
obj_poses = relative_pose @ obj_poses
obj_poses = obj_poses[frame_indices]
obj_num = len(obj_poses)
for idx in range(obj_num):
obj_pose = obj_poses[idx]
if (idx % 5 == 0):
cam_points_vis = get_cam_points_vis(W, H, intrinsics, obj_pose, [0., 0., 0.8], frustum_length=0.5)
vis_all.append(cam_points_vis)
# vis coordinates
axis = open3d.geometry.TriangleMesh.create_coordinate_frame(size=2, origin=[0,0,0])
# vis_all.append(axis)
open3d.visualization.draw_geometries(vis_all)