Datasets:

Modalities:
Image
Video
Languages:
English
Size:
< 1K
Libraries:
Datasets
License:
360Motion-Dataset / utils.py
lemonaddie's picture
Upload 6 files
a50a70d verified
raw
history blame
9.5 kB
# Copyright 2024 Xiao Fu, CUHK, Kuaishou Tech. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# --------------------------------------------------------------------------
# If you find this code useful, we kindly ask you to cite our paper in your work.
# More information about the method can be found at http://fuxiao0719.github.io/projects/3dtrajmaster
# --------------------------------------------------------------------------
import os
import numpy as np
from io import BytesIO
import imageio.v2 as imageio
import open3d as o3d
import math
import trimesh
import json
def get_camera_frustum(img_size, K, W2C, frustum_length=0.5, color=[0., 1., 0.]):
W, H = img_size
hfov = np.rad2deg(np.arctan(W / 2. / K[0, 0]) * 2.)
vfov = np.rad2deg(np.arctan(H / 2. / K[1, 1]) * 2.)
half_w = frustum_length * np.tan(np.deg2rad(hfov / 2.))
half_h = frustum_length * np.tan(np.deg2rad(vfov / 2.))
# build view frustum for camera (I, 0)
frustum_points = np.array([[0., 0., 0.], # frustum origin
[-half_w, -half_h, frustum_length], # top-left image corner
[half_w, -half_h, frustum_length], # top-right image corner
[half_w, half_h, frustum_length], # bottom-right image corner
[-half_w, half_h, frustum_length]]) # bottom-left image corner
frustum_lines = np.array([[0, i] for i in range(1, 5)] + [[i, (i+1)] for i in range(1, 4)] + [[4, 1]])
frustum_colors = np.tile(np.array(color).reshape((1, 3)), (frustum_lines.shape[0], 1))
# frustum_colors = np.vstack((np.tile(np.array([[1., 0., 0.]]), (4, 1)),
# np.tile(np.array([[0., 1., 0.]]), (4, 1))))
# transform view frustum from (I, 0) to (R, t)
C2W = np.linalg.inv(W2C)
frustum_points = np.dot(np.hstack((frustum_points, np.ones_like(frustum_points[:, 0:1]))), C2W.T)
frustum_points = frustum_points[:, :3] / frustum_points[:, 3:4]
return frustum_points, frustum_lines, frustum_colors
def frustums2lineset(frustums):
N = len(frustums)
merged_points = np.zeros((N*5, 3)) # 5 vertices per frustum
merged_lines = np.zeros((N*8, 2)) # 8 lines per frustum
merged_colors = np.zeros((N*8, 3)) # each line gets a color
for i, (frustum_points, frustum_lines, frustum_colors) in enumerate(frustums):
merged_points[i*5:(i+1)*5, :] = frustum_points
merged_lines[i*8:(i+1)*8, :] = frustum_lines + i*5
merged_colors[i*8:(i+1)*8, :] = frustum_colors
lineset = o3d.geometry.LineSet()
lineset.points = o3d.utility.Vector3dVector(merged_points)
lineset.lines = o3d.utility.Vector2iVector(merged_lines)
lineset.colors = o3d.utility.Vector3dVector(merged_colors)
return lineset
def visualize_cameras(colored_camera_dicts, sphere_radius, camera_size=0.1, geometry_file=None, geometry_type='mesh'):
sphere = o3d.geometry.TriangleMesh.create_sphere(radius=sphere_radius, resolution=10)
sphere = o3d.geometry.LineSet.create_from_triangle_mesh(sphere)
sphere.paint_uniform_color((1, 0, 0))
coord_frame = o3d.geometry.TriangleMesh.create_coordinate_frame(size=0.5, origin=[0., 0., 0.])
things_to_draw = [sphere, coord_frame]
idx = 0
for color, camera_dict in colored_camera_dicts:
idx += 1
cnt = 0
frustums = []
for img_name in sorted(camera_dict.keys()):
K = np.array(camera_dict[img_name]['K']).reshape((4, 4))
W2C = np.array(camera_dict[img_name]['W2C']).reshape((4, 4))
C2W = np.linalg.inv(W2C)
img_size = camera_dict[img_name]['img_size']
frustums.append(get_camera_frustum(img_size, K, W2C, frustum_length=camera_size, color=color))
cnt += 1
cameras = frustums2lineset(frustums)
things_to_draw.append(cameras)
if geometry_file is not None:
if geometry_type == 'mesh':
geometry = o3d.io.read_triangle_mesh(geometry_file)
geometry.compute_vertex_normals()
elif geometry_type == 'pointcloud':
geometry = o3d.io.read_point_cloud(geometry_file)
else:
raise Exception('Unknown geometry_type: ', geometry_type)
things_to_draw.append(geometry)
o3d.visualization.draw_geometries(things_to_draw)
def parse_matrix(matrix_str):
rows = matrix_str.strip().split('] [')
matrix = []
for row in rows:
row = row.replace('[', '').replace(']', '')
matrix.append(list(map(float, row.split())))
return np.array(matrix)
def load_sceneposes(objs_file, obj_idx, obj_transl):
ext_poses = []
for i, key in enumerate(objs_file.keys()):
ext_poses.append(parse_matrix(objs_file[key][obj_idx]['matrix']))
ext_poses = np.stack(ext_poses)
ext_poses = np.transpose(ext_poses, (0,2,1))
ext_poses[:,:3,3] -= obj_transl
ext_poses[:,:3,3] /= 100.
ext_poses = ext_poses[:, :, [1,2,0,3]]
return ext_poses
def save_images2video(images, video_name, fps):
fps = fps
format = "mp4"
codec = "libx264"
ffmpeg_params = ["-crf", str(12)]
pixelformat = "yuv420p"
video_stream = BytesIO()
with imageio.get_writer(
video_stream,
fps=fps,
format=format,
codec=codec,
ffmpeg_params=ffmpeg_params,
pixelformat=pixelformat,
) as writer:
for idx in range(len(images)):
writer.append_data(images[idx])
video_data = video_stream.getvalue()
output_path = os.path.join(video_name + ".mp4")
with open(output_path, "wb") as f:
f.write(video_data)
def normalize(x):
return x / np.linalg.norm(x)
def viewmatrix(z, up, pos):
vec2 = normalize(z)
vec1_avg = up
vec0 = normalize(np.cross(vec1_avg, vec2))
vec1 = normalize(np.cross(vec2, vec0))
m = np.stack([vec0, vec1, vec2, pos], 1)
return m
def matrix_to_euler_angles(matrix):
sy = math.sqrt(matrix[0][0] * matrix[0][0] + matrix[1][0] * matrix[1][0])
singular = sy < 1e-6
if not singular:
x = math.atan2(matrix[2][1], matrix[2][2])
y = math.atan2(-matrix[2][0], sy)
z = math.atan2(matrix[1][0], matrix[0][0])
else:
x = math.atan2(-matrix[1][2], matrix[1][1])
y = math.atan2(-matrix[2][0], sy)
z = 0
return math.degrees(x), math.degrees(y), math.degrees(z)
def eul2rot(theta) :
R = np.array([[np.cos(theta[1])*np.cos(theta[2]), np.sin(theta[0])*np.sin(theta[1])*np.cos(theta[2]) - np.sin(theta[2])*np.cos(theta[0]), np.sin(theta[1])*np.cos(theta[0])*np.cos(theta[2]) + np.sin(theta[0])*np.sin(theta[2])],
[np.sin(theta[2])*np.cos(theta[1]), np.sin(theta[0])*np.sin(theta[1])*np.sin(theta[2]) + np.cos(theta[0])*np.cos(theta[2]), np.sin(theta[1])*np.sin(theta[2])*np.cos(theta[0]) - np.sin(theta[0])*np.cos(theta[2])],
[-np.sin(theta[1]), np.sin(theta[0])*np.cos(theta[1]), np.cos(theta[0])*np.cos(theta[1])]])
return R.T
def extract_location_rotation(data):
results = {}
for key, value in data.items():
matrix = parse_matrix(value)
location = np.array([matrix[3][0], matrix[3][1], matrix[3][2]])
rotation = eul2rot(matrix_to_euler_angles(matrix))
transofmed_matrix = np.identity(4)
transofmed_matrix[:3,3] = location
transofmed_matrix[:3,:3] = rotation
results[key] = transofmed_matrix
return results
def get_cam_points_vis(W, H, intrinsics, ext_pose, color,frustum_length):
cam = get_camera_frustum((W, H), intrinsics, np.linalg.inv(ext_pose), frustum_length=frustum_length, color=[0., 0., 1.])
cam_points = cam[0]
for item in cam[1]:
cam_points = np.concatenate((cam_points, np.linspace(cam[0][item[0]], cam[0][item[1]], num=1000, endpoint=True, retstep=False, dtype=None)))
cam_points[:,0]*=-1
cam_points = trimesh.points.PointCloud(vertices = cam_points, colors=[0, 255, 0, 255])
cam_points_vis = o3d.geometry.PointCloud()
cam_points_vis.points = o3d.utility.Vector3dVector(cam_points)
cam_points_vis.paint_uniform_color(color)
return cam_points_vis
def batch_axis_angle_to_rotation_matrix(r_batch):
batch_size = r_batch.shape[0]
rotation_matrices = []
for i in range(batch_size):
r = r_batch[i]
theta = np.linalg.norm(r)
if theta == 0:
rotation_matrices.append(np.eye(3))
else:
k = r / theta
kx, ky, kz = k
K = np.array([
[0, -kz, ky],
[kz, 0, -kx],
[-ky, kx, 0]
])
R = np.eye(3) + np.sin(theta) * K + (1 - np.cos(theta)) * np.dot(K, K)
rotation_matrices.append(R)
return np.array(rotation_matrices)