Datasets:
Tasks:
Token Classification
Sub-tasks:
named-entity-recognition
Languages:
English
Size:
1K<n<10K
License:
Update ner.py
Browse files
ner.py
CHANGED
@@ -1,100 +1 @@
|
|
1 |
-
import datasets
|
2 |
-
|
3 |
-
logger = datasets.logging.get_logger(__name__)
|
4 |
-
|
5 |
-
_URL = "https://raw.githubusercontent.com/Kriyansparsana/demorepo/main/train.txt"
|
6 |
-
|
7 |
-
class indian_namesConfig(datasets.BuilderConfig):
|
8 |
-
"""The WNUT 17 Emerging Entities Dataset."""
|
9 |
-
|
10 |
-
def __init__(self, **kwargs):
|
11 |
-
"""BuilderConfig for WNUT 17.
|
12 |
-
Args:
|
13 |
-
**kwargs: keyword arguments forwarded to super.
|
14 |
-
"""
|
15 |
-
super(indian_namesConfig, self).__init__(**kwargs)
|
16 |
-
|
17 |
-
class indian_names(datasets.GeneratorBasedBuilder):
|
18 |
-
"""The WNUT 17 Emerging Entities Dataset."""
|
19 |
-
|
20 |
-
BUILDER_CONFIGS = [
|
21 |
-
indian_namesConfig(
|
22 |
-
name="indian_names", version=datasets.Version("1.0.0"), description="The WNUT 17 Emerging Entities Dataset"
|
23 |
-
),
|
24 |
-
]
|
25 |
-
|
26 |
-
def _info(self):
|
27 |
-
return datasets.DatasetInfo(
|
28 |
-
features=datasets.Features(
|
29 |
-
{
|
30 |
-
"id": datasets.Value("string"),
|
31 |
-
"tokens": datasets.Sequence(datasets.Value("string")),
|
32 |
-
"ner_tags": datasets.Sequence(
|
33 |
-
datasets.features.ClassLabel(
|
34 |
-
names=[
|
35 |
-
"O",
|
36 |
-
"B-corporation",
|
37 |
-
"I-corporation",
|
38 |
-
"B-person",
|
39 |
-
"I-person"
|
40 |
-
]
|
41 |
-
)
|
42 |
-
),
|
43 |
-
}
|
44 |
-
),
|
45 |
-
supervised_keys=None,
|
46 |
-
)
|
47 |
-
|
48 |
-
def _split_generators(self, dl_manager):
|
49 |
-
"""Returns SplitGenerators."""
|
50 |
-
urls_to_download = {
|
51 |
-
"train": f"{_URL}",
|
52 |
-
}
|
53 |
-
downloaded_files = dl_manager.download_and_extract(urls_to_download)
|
54 |
-
|
55 |
-
return [
|
56 |
-
datasets.SplitGenerator(name=datasets.Split.TRAIN, gen_kwargs={"filepath": downloaded_files["train"]}),
|
57 |
-
]
|
58 |
-
|
59 |
-
def _generate_examples(self, filepath):
|
60 |
-
logger.info("⏳ Generating examples from = %s", filepath)
|
61 |
-
with open(filepath, encoding="utf-8") as f:
|
62 |
-
current_tokens = []
|
63 |
-
current_labels = []
|
64 |
-
sentence_counter = 0
|
65 |
-
for row in f:
|
66 |
-
row = row.rstrip()
|
67 |
-
if row:
|
68 |
-
if "\t" in row:
|
69 |
-
token, label = row.split("\t")
|
70 |
-
current_tokens.append(token)
|
71 |
-
current_labels.append(label)
|
72 |
-
else:
|
73 |
-
# Handle cases where the delimiter is missing
|
74 |
-
# You can choose to skip these rows or handle them differently
|
75 |
-
logger.warning(f"Delimiter missing in row: {row}")
|
76 |
-
else:
|
77 |
-
# New sentence
|
78 |
-
if not current_tokens:
|
79 |
-
# Consecutive empty lines will cause empty sentences
|
80 |
-
continue
|
81 |
-
assert len(current_tokens) == len(current_labels), "💔 between len of tokens & labels"
|
82 |
-
sentence = (
|
83 |
-
sentence_counter,
|
84 |
-
{
|
85 |
-
"id": str(sentence_counter),
|
86 |
-
"tokens": current_tokens,
|
87 |
-
"ner_tags": current_labels,
|
88 |
-
},
|
89 |
-
)
|
90 |
-
sentence_counter += 1
|
91 |
-
current_tokens = []
|
92 |
-
current_labels = []
|
93 |
-
yield sentence
|
94 |
-
# Don't forget the last sentence in the dataset 🧐
|
95 |
-
if current_tokens:
|
96 |
-
yield sentence_counter, {
|
97 |
-
"id": str(sentence_counter),
|
98 |
-
"tokens": current_tokens,
|
99 |
-
"ner_tags": current_labels,
|
100 |
-
}
|
|
|
1 |
+
import datasets logger = datasets.logging.get_logger(__name__) _URL = "https://raw.githubusercontent.com/Kriyansparsana/demorepo/main/" _TRAINING_FILE = "Indian_dataset_wnut_train.conll" # _DEV_FILE = "indian_dataset.conll" _TEST_FILE = "emerging.test.annotated" class indian_namesConfig(datasets.BuilderConfig): """The WNUT 17 Emerging Entities Dataset.""" def __init__(self, **kwargs): """BuilderConfig for WNUT 17. Args: **kwargs: keyword arguments forwarded to super. """ super(indian_namesConfig, self).__init__(**kwargs) class indian_names(datasets.GeneratorBasedBuilder): """The WNUT 17 Emerging Entities Dataset.""" BUILDER_CONFIGS = [ indian_namesConfig( name="indian_names", version=datasets.Version("1.0.0"), description="The WNUT 17 Emerging Entities Dataset" ), ] def _info(self): return datasets.DatasetInfo( features=datasets.Features( { "id": datasets.Value("string"), "tokens": datasets.Sequence(datasets.Value("string")), "ner_tags": datasets.Sequence( datasets.features.ClassLabel( names=[ "O", "B-corporation", "I-corporation", "B-creative-work", "I-creative-work", "B-group", "I-group", "B-location", "I-location", "B-person", "I-person", "B-product", "I-product", ] ) ), } ), supervised_keys=None, ) def _split_generators(self, dl_manager): """Returns SplitGenerators.""" urls_to_download = { "train": f"{_URL}{_TRAINING_FILE}", # "dev": f"{_URL}{_DEV_FILE}", "test": f"{_URL}{_TEST_FILE}", } downloaded_files = dl_manager.download_and_extract(urls_to_download) return [ datasets.SplitGenerator(name=datasets.Split.TRAIN, gen_kwargs={"filepath": downloaded_files["train"]}), # datasets.SplitGenerator(name=datasets.Split.VALIDATION, gen_kwargs={"filepath": downloaded_files["dev"]}), datasets.SplitGenerator(name=datasets.Split.TEST, gen_kwargs={"filepath": downloaded_files["test"]}), ] def _generate_examples(self, filepath): logger.info("⏳ Generating examples from = %s", filepath) with open(filepath, encoding="utf-8") as f: current_tokens = [] current_labels = [] sentence_counter = 0 for row in f: row = row.rstrip() if row: if "\t" in row: token, label = row.split("\t") current_tokens.append(token) current_labels.append(label) else: # Handle cases where the delimiter is missing # You can choose to skip these rows or handle them differently logger.warning(f"Delimiter missing in row: {row}") else: # New sentence if not current_tokens: # Consecutive empty lines will cause empty sentences continue assert len(current_tokens) == len(current_labels), "💔 between len of tokens & labels" sentence = ( sentence_counter, { "id": str(sentence_counter), "tokens": current_tokens, "ner_tags": current_labels, }, ) sentence_counter += 1 current_tokens = [] current_labels = [] yield sentence # Don't forget the last sentence in the dataset 🧐 if current_tokens: yield sentence_counter, { "id": str(sentence_counter), "tokens": current_tokens, "ner_tags": current_labels, }
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|