--- license: unknown dataset_info: features: - name: image_id dtype: int64 - name: image dtype: image - name: width dtype: int64 - name: height dtype: int64 - name: objects struct: - name: bbox sequence: sequence: int64 - name: categories sequence: int64 splits: - name: train num_bytes: 3878997 num_examples: 73 download_size: 3549033 dataset_size: 3878997 configs: - config_name: default data_files: - split: train path: data/train-* task_categories: - object-detection size_categories: - n<1K --- # Failures in 3D printing Dataset This is a small dataset of images from failures in 3D print. That idea of this dataset is use for train and object detection model for failures detection on 3D printing. In the images it detected 4 categories: - **Error**: This refer a any error in the part except the type of error known like spaghetti - **Extrusor**: The base of the extrusor - **Part**: The part is the piece that is printing - **Spagheti**: This is a type of error produced because the extrusor is printing on the air ## Structure The structure of the dataset is - **image_id:** Id of the image - **image:** Image instance in PIL format - **width:** Width of the image in pixels - **height:** Height of the image in pixels - **objects:** bounding boxes in the images - **bbox:** coordinates of the bounding box. The coordinates are [x_center, y_center, bbox width, bbox height] - **categories:** category of the bounding box. The categories are 0: error, 1: extrusor, 2: part and 3: spaghetti ## Download the dataset ``` from datasets import load_dataset dataset = load_dataset('Javiai/failures-3D-print') ``` ## Show the Bounding Boxes ``` import numpy as np import os from PIL import Image, ImageDraw image = dataset["train"][0]["image"] annotations = dataset["train"][0]["objects"] draw = ImageDraw.Draw(image) categories = ['error','extrusor','part','spagheti'] id2label = {index: x for index, x in enumerate(categories, start=0)} label2id = {v: k for k, v in id2label.items()} for i in range(len(annotations["categories"])): box = annotations["bbox"][i] class_idx = annotations["categories"][i] x, y, w, h = tuple(box) draw.rectangle((x - w/2, y - h/2, x + w/2, y + h/2), outline="red", width=1) draw.text((x - w/2, y - h/2), id2label[class_idx], fill="white") image ```