File size: 4,848 Bytes
81832ab 3086596 81832ab 5920ad8 81832ab 5920ad8 d4ca3df 5920ad8 a80e970 09a92cd 5920ad8 d3a0801 5920ad8 d3a0801 5920ad8 e42c15d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 |
---
license: cc-by-sa-4.0
task_categories:
- image-to-image
language:
- en
tags:
- rain
pretty_name: ' High-resolution Rainy Image'
size_categories:
- 1K<n<10K
---
# High-resolution Rainy Image Synthesis: Learning from Rendering
This is the dataset in the paper "High-resolution Rainy Image Synthesis: Learning from Rendering"
* Project Page: https://kb824999404.github.io/HRIG/
* Paper: https://arxiv.org/abs/2502.16421
* Code: https://github.com/kb824999404/HRIG
<table>
<tr>
<td style="padding: 0;width=30%;"><img src="Imgs/lane/lane (1).jpg" /></td>
<td style="padding: 0;width=30%;"><img src="Imgs/lane/lane (2).jpg" /></td>
<td style="padding: 0;width=30%;"><img src="Imgs/lane/lane (3).jpg" /></td>
</tr>
<tr>
<td style="padding: 0;width=30%;"><img src="Imgs/lane/lane (4).jpg" /></td>
<td style="padding: 0;width=30%;"><img src="Imgs/lane/lane (5).jpg" /></td>
<td style="padding: 0;width=30%;"><img src="Imgs/lane/lane (6).jpg" /></td>
</tr>
<tr>
<td style="padding: 0;width=30%;"><img src="Imgs/citystreet/citystreet (1).jpg" /></td>
<td style="padding: 0;width=30%;"><img src="Imgs/citystreet/citystreet (2).jpg" /></td>
<td style="padding: 0;width=30%;"><img src="Imgs/citystreet/citystreet (3).jpg" /></td>
</tr>
<tr>
<td style="padding: 0;width=30%;"><img src="Imgs/citystreet/citystreet (4).jpg" /></td>
<td style="padding: 0;width=30%;"><img src="Imgs/citystreet/citystreet (5).jpg" /></td>
<td style="padding: 0;width=30%;"><img src="Imgs/citystreet/citystreet (6).jpg" /></td>
</tr>
<tr>
<td style="padding: 0;width=30%;"><img src="Imgs/japanesestreet/japanese (1).jpg" /></td>
<td style="padding: 0;width=30%;"><img src="Imgs/japanesestreet/japanese (2).jpg" /></td>
<td style="padding: 0;width=30%;"><img src="Imgs/japanesestreet/japanese (3).jpg" /></td>
</tr>
<tr>
<td style="padding: 0;width=30%;"><img src="Imgs/japanesestreet/japanese (4).jpg" /></td>
<td style="padding: 0;width=30%;"><img src="Imgs/japanesestreet/japanese (5).jpg" /></td>
<td style="padding: 0;width=30%;"><img src="Imgs/japanesestreet/japanese (6).jpg" /></td>
</tr>
</table>
## HRI Dataset
The High-resolution Rainy Image (HRI) dataset in the rendering stage.
<table style="text-align: center;">
<tr>
<th>scene</th>
<th>dataset type</th>
<th>resolution</th>
<th>viewpoints</th>
<th>moments</th>
<th>intensities</th>
<th>image pairs</th>
</tr>
<tr>
<td style="vertical-align: middle;" rowspan="2">lane</td>
<td>training set</td>
<td style="vertical-align: middle;" rowspan="2">2048×1024</td>
<td>3</td>
<td style="vertical-align: middle;" rowspan="2">100</td>
<td style="vertical-align: middle;" rowspan="2">4</td>
<td>1200</td>
</tr>
<tr>
<td>test set</td>
<td>1</td>
<td>400</td>
</tr>
<tr>
<td style="vertical-align: middle;" rowspan="2">citystreet</td>
<td>training set</td>
<td style="vertical-align: middle;" rowspan="2">2048×1024</td>
<td>5</td>
<td style="vertical-align: middle;" rowspan="2">25</td>
<td style="vertical-align: middle;" rowspan="2">4</td>
<td>500</td>
</tr>
<tr>
<td>test set</td>
<td>1</td>
<td>100</td>
</tr>
<tr>
<td style="vertical-align: middle;" rowspan="2">japanesestreet</td>
<td>training set</td>
<td style="vertical-align: middle;" rowspan="2">2048×1024</td>
<td>8</td>
<td style="vertical-align: middle;" rowspan="2">25</td>
<td style="vertical-align: middle;" rowspan="2">4</td>
<td>800</td>
</tr>
<tr>
<td>test set</td>
<td>2</td>
<td>200</td>
</tr>
</table>
* `clean`: background RGB images and depth images of all scenes.
* `rainy`: rain layer images, RGB rainy images and depth rainy images of all scenes.
* `trainset.json`: the sample lists of the training set.
* `testset.json`: the sample lists of the test set.
* For each sample in the training set and the test set:
* `scene`: the scene name
* `sequence`: the viewpoint name
* `intensity`: the rain intensity
* `wind`: the wind direction( all zero for the HRI dataset)
* `background`: the path of the background RGB image
* `depth`: the path of the background depth image
* `rain_layer`: the path of the rain layer image
* `rainy_depth`: the path of the rainy depth image
* `rainy_image`: the path of the rainy RGB image
## BlenderFiles
The Blender files for rendering RGB and depth images of all viewpoints are included in the directory of each scene.
## Rain streak database
The Rain streak database from the paper [Rain Rendering for Evaluating and Improving Robustness to Bad Weather](https://github.com/astra-vision/rain-rendering).
## Ctation
When using these datasets, please cite our paper:
```
@article{zhou2025high,
title={High-resolution Rainy Image Synthesis: Learning from Rendering},
author={Zhou, Kaibin and Zhao, Shengjie and Deng, Hao and Zhang, Lin},
journal={arXiv preprint arXiv:2502.16421},
year={2025}
}
``` |