Datasets:

ArXiv:
License:
File size: 9,475 Bytes
0afc661
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4d0dfd4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0afc661
 
 
 
 
 
 
4d0dfd4
 
 
 
 
 
 
 
0afc661
 
 
 
 
 
 
4d0dfd4
0afc661
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4d0dfd4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0afc661
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
# coding=utf-8
# Copyright 2022 The HuggingFace Datasets Authors and the current dataset script contributor.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""COCO"""
import json
import os
from pathlib import Path

import datasets


_CITATION = """
@article{DBLP:journals/corr/LinMBHPRDZ14,
  author    = {Tsung{-}Yi Lin and
               Michael Maire and
               Serge J. Belongie and
               Lubomir D. Bourdev and
               Ross B. Girshick and
               James Hays and
               Pietro Perona and
               Deva Ramanan and
               Piotr Doll{\'{a}}r and
               C. Lawrence Zitnick},
  title     = {Microsoft {COCO:} Common Objects in Context},
  journal   = {CoRR},
  volume    = {abs/1405.0312},
  year      = {2014},
  url       = {http://arxiv.org/abs/1405.0312},
  eprinttype = {arXiv},
  eprint    = {1405.0312},
  timestamp = {Mon, 13 Aug 2018 16:48:13 +0200},
  biburl    = {https://dblp.org/rec/journals/corr/LinMBHPRDZ14.bib},
  bibsource = {dblp computer science bibliography, https://dblp.org}
}
"""

_DESCRIPTION = """
MS COCO is a large-scale object detection, segmentation, and captioning dataset.
COCO has several features: Object segmentation, Recognition in context, Superpixel stuff segmentation, 330K images (>200K labeled), 1.5 million object instances, 80 object categories, 91 stuff categories, 5 captions per image, 250,000 people with keypoints.
"""

_HOMEPAGE = "https://cocodataset.org/#home"

_LICENSE = "CC BY 4.0"


_IMAGES_URLS = {
    "train": "http://images.cocodataset.org/zips/train2014.zip",
    "validation": "http://images.cocodataset.org/zips/val2014.zip",
}

_KARPATHY_FILES_URL = "https://cs.stanford.edu/people/karpathy/deepimagesent/caption_datasets.zip"

_SPLIT_MAP = {"train": "train2014", "validation": "val2014"}

_FEATURES = datasets.Features(
    {
        "image": datasets.Image(),
        "filepath": datasets.Value("string"),
        "sentids": [datasets.Value("int32")],
        "filename": datasets.Value("string"),
        "imgid": datasets.Value("int32"),
        "split": datasets.Value("string"),
        "sentences": {
            "tokens": [datasets.Value("string")],
            "raw": datasets.Value("string"),
            "imgid": datasets.Value("int32"),
            "sentid": datasets.Value("int32"),
        },
        "cocoid": datasets.Value("int32"),
    }
)

_FEATURES_CAPTIONS = datasets.Features(
    {
        "image": datasets.Image(),
        "filepath": datasets.Value("string"),
        "sentids": [datasets.Value("int32")],
        "filename": datasets.Value("string"),
        "imgid": datasets.Value("int32"),
        "split": datasets.Value("string"),
        "sentences_tokens": [[datasets.Value("string")]],
        "sentences_raw": [datasets.Value("string")],
        "sentences_sentid": [datasets.Value("int32")],
        "cocoid": datasets.Value("int32"),
    }
)


class COCO(datasets.GeneratorBasedBuilder):
    """COCO"""

    VERSION = datasets.Version("1.0.0")

    BUILDER_CONFIGS = [
        datasets.BuilderConfig(
            name="2014", version=VERSION, description="2014 version of COCO with Karpathy annotations and splits"
        ),
        datasets.BuilderConfig(
            name="2014_captions",
            version=VERSION,
            description="Same as 2014 but with all captions of one image gathered in a single example",
        ),
    ]

    DEFAULT_CONFIG_NAME = "2014"

    def _info(self):
        return datasets.DatasetInfo(
            description=_DESCRIPTION,
            features=_FEATURES if self.config.name == "2014" else _FEATURES_CAPTIONS,
            homepage=_HOMEPAGE,
            license=_LICENSE,
            citation=_CITATION,
        )

    def _split_generators(self, dl_manager):
        annotation_file = os.path.join(dl_manager.download_and_extract(_KARPATHY_FILES_URL), "dataset_coco.json")
        image_folders = {k: Path(v) for k, v in dl_manager.download_and_extract(_IMAGES_URLS).items()}

        return [
            datasets.SplitGenerator(
                name=datasets.Split.TRAIN,
                gen_kwargs={
                    "annotation_file": annotation_file,
                    "image_folders": image_folders,
                    "split_key": "train",
                },
            ),
            datasets.SplitGenerator(
                name=datasets.Split.VALIDATION,
                gen_kwargs={
                    "annotation_file": annotation_file,
                    "image_folders": image_folders,
                    "split_key": "validation",
                },
            ),
            datasets.SplitGenerator(
                name=datasets.Split.TEST,
                gen_kwargs={
                    "annotation_file": annotation_file,
                    "image_folders": image_folders,
                    "split_key": "test",
                },
            ),
        ]

    def _generate_examples(self, annotation_file, image_folders, split_key):
        if self.config.name == "2014_captions":
            return self._generate_examples_2014_captions(annotation_file, image_folders, split_key)
        elif self.config.name == "2014":
            return self._generate_examples_2014(annotation_file, image_folders, split_key)

    def _generate_examples_2014_captions(self, annotation_file, image_folders, split_key):
        with open(annotation_file, "r", encoding="utf-8") as fi:
            annotations = json.load(fi)

            for image_metadata in annotations["images"]:
                if split_key == "train":
                    if image_metadata["split"] != "train" and image_metadata["split"] != "restval":
                        continue
                elif split_key == "validation":
                    if image_metadata["split"] != "val":
                        continue
                elif split_key == "test":
                    if image_metadata["split"] != "test":
                        continue

                if "val2014" in image_metadata["filename"]:
                    image_path = image_folders["validation"] / _SPLIT_MAP["validation"]
                else:
                    image_path = image_folders["train"] / _SPLIT_MAP["train"]

                image_path = image_path / image_metadata["filename"]

                record = {
                    "image": str(image_path.absolute()),
                    "filepath": image_metadata["filename"],
                    "sentids": image_metadata["sentids"],
                    "filename": image_metadata["filename"],
                    "imgid": image_metadata["imgid"],
                    "split": image_metadata["split"],
                    "cocoid": image_metadata["cocoid"],
                    "sentences_tokens": [caption["tokens"] for caption in image_metadata["sentences"]],
                    "sentences_raw": [caption["raw"] for caption in image_metadata["sentences"]],
                    "sentences_sentid": [caption["sentid"] for caption in image_metadata["sentences"]],
                }

                yield record["imgid"], record

    def _generate_examples_2014(self, annotation_file, image_folders, split_key):
        counter = 0
        with open(annotation_file, "r", encoding="utf-8") as fi:
            annotations = json.load(fi)

            for image_metadata in annotations["images"]:
                if split_key == "train":
                    if image_metadata["split"] != "train" and image_metadata["split"] != "restval":
                        continue
                elif split_key == "validation":
                    if image_metadata["split"] != "val":
                        continue
                elif split_key == "test":
                    if image_metadata["split"] != "test":
                        continue

                if "val2014" in image_metadata["filename"]:
                    image_path = image_folders["validation"] / _SPLIT_MAP["validation"]
                else:
                    image_path = image_folders["train"] / _SPLIT_MAP["train"]

                image_path = image_path / image_metadata["filename"]

                for caption in image_metadata["sentences"]:
                    yield counter, {
                        "image": str(image_path.absolute()),
                        "filepath": image_metadata["filename"],
                        "sentids": image_metadata["sentids"],
                        "filename": image_metadata["filename"],
                        "imgid": image_metadata["imgid"],
                        "split": image_metadata["split"],
                        "sentences": {
                            "tokens": caption["tokens"],
                            "raw": caption["raw"],
                            "imgid": caption["imgid"],
                            "sentid": caption["sentid"],
                        },
                        "cocoid": image_metadata["cocoid"],
                    }
                    counter += 1