--- license: apache-2.0 --- To create the dataset, we do the following for our internal tooling. * rename `turns` to `prompts`, * add empty `reference` to remaining prompts (for HF Datasets), * Use the following code to load and save as a dataset ```python from datasets import load_dataset import hashlib data = load_dataset("json", data_files="https://huggingface.co./datasets/HuggingFaceH4/mt_bench_prompts/raw/main/raw/question.jsonl", split="train") # %% create_dataset.ipynb 11 def format_example(example): return { "prompt": example["prompt"], "prompt_id": int(hashlib.sha256(''.join(example["prompt"]).encode("utf-8")).hexdigest(), 16) % (10 ** 8), "category": example["category"], "reference": example["reference"], } formatted_ds = data.map(format_example, num_proc=6, remove_columns=data.column_names) # formatted_ds.push_to_hub("HuggingFaceH4/mt_bench_prompts", split="train") ```