|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
import os |
|
|
|
import datasets |
|
|
|
|
|
_DESCRIPTION = """\ |
|
The QCRI Educational Domain Corpus (formerly QCRI AMARA Corpus) is an open multilingual collection of subtitles for educational videos and lectures collaboratively transcribed and translated over the AMARA web-based platform. |
|
Developed by: Qatar Computing Research Institute, Arabic Language Technologies Group |
|
The QED Corpus is made public for RESEARCH purpose only. |
|
The corpus is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. Copyright Qatar Computing Research Institute. All rights reserved. |
|
225 languages, 9,291 bitexts |
|
total number of files: 271,558 |
|
total number of tokens: 371.76M |
|
total number of sentence fragments: 30.93M |
|
""" |
|
_HOMEPAGE_URL = "http://opus.nlpl.eu/QED.php" |
|
_CITATION = """\ |
|
A. Abdelali, F. Guzman, H. Sajjad and S. Vogel, "The AMARA Corpus: Building parallel language resources for the educational domain", The Proceedings of the 9th International Conference on Language Resources and Evaluation (LREC'14). Reykjavik, Iceland, 2014. Pp. 1856-1862. Isbn. 978-2-9517408-8-4. |
|
""" |
|
|
|
_VERSION = "2.0.0" |
|
_BASE_NAME = "QED.{}.{}" |
|
_BASE_URL = "https://object.pouta.csc.fi/OPUS-QED/v2.0a/moses/{}-{}.txt.zip" |
|
|
|
|
|
_LANGUAGE_PAIRS = [ |
|
("ar", "ko"), |
|
("de", "fr"), |
|
("es", "it"), |
|
("en", "ja"), |
|
("he", "nl"), |
|
] |
|
|
|
|
|
class QEDAmaraConfig(datasets.BuilderConfig): |
|
def __init__(self, *args, lang1=None, lang2=None, **kwargs): |
|
super().__init__( |
|
*args, |
|
name=f"{lang1}-{lang2}", |
|
**kwargs, |
|
) |
|
self.lang1 = lang1 |
|
self.lang2 = lang2 |
|
|
|
|
|
class QEDAmara(datasets.GeneratorBasedBuilder): |
|
BUILDER_CONFIGS = [ |
|
QEDAmaraConfig( |
|
lang1=lang1, |
|
lang2=lang2, |
|
description=f"Translating {lang1} to {lang2} or vice versa", |
|
version=datasets.Version(_VERSION), |
|
) |
|
for lang1, lang2 in _LANGUAGE_PAIRS |
|
] |
|
BUILDER_CONFIG_CLASS = QEDAmaraConfig |
|
|
|
def _info(self): |
|
return datasets.DatasetInfo( |
|
description=_DESCRIPTION, |
|
features=datasets.Features( |
|
{ |
|
"id": datasets.Value("string"), |
|
"translation": datasets.Translation(languages=(self.config.lang1, self.config.lang2)), |
|
}, |
|
), |
|
supervised_keys=None, |
|
homepage=_HOMEPAGE_URL, |
|
citation=_CITATION, |
|
) |
|
|
|
def _split_generators(self, dl_manager): |
|
def _base_url(lang1, lang2): |
|
return _BASE_URL.format(lang1, lang2) |
|
|
|
download_url = _base_url(self.config.lang1, self.config.lang2) |
|
path = dl_manager.download_and_extract(download_url) |
|
return [ |
|
datasets.SplitGenerator( |
|
name=datasets.Split.TRAIN, |
|
gen_kwargs={"datapath": path}, |
|
) |
|
] |
|
|
|
def _generate_examples(self, datapath): |
|
l1, l2 = self.config.lang1, self.config.lang2 |
|
folder = l1 + "-" + l2 |
|
l1_file = _BASE_NAME.format(folder, l1) |
|
l2_file = _BASE_NAME.format(folder, l2) |
|
l1_path = os.path.join(datapath, l1_file) |
|
l2_path = os.path.join(datapath, l2_file) |
|
with open(l1_path, encoding="utf-8") as f1, open(l2_path, encoding="utf-8") as f2: |
|
for sentence_counter, (x, y) in enumerate(zip(f1, f2)): |
|
x = x.strip() |
|
y = y.strip() |
|
result = ( |
|
sentence_counter, |
|
{ |
|
"id": str(sentence_counter), |
|
"translation": {l1: x, l2: y}, |
|
}, |
|
) |
|
sentence_counter += 1 |
|
yield result |
|
|