|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
import os |
|
|
|
import datasets |
|
|
|
|
|
_DESCRIPTION = """\ |
|
This is a parallel corpus made out of PDF documents from the European Medicines Agency. All files are automatically converted from PDF to plain text using pdftotext with the command line arguments -layout -nopgbrk -eol unix. There are some known problems with tables and multi-column layouts - some of them are fixed in the current version. |
|
|
|
source: http://www.emea.europa.eu/ |
|
|
|
22 languages, 231 bitexts |
|
total number of files: 41,957 |
|
total number of tokens: 311.65M |
|
total number of sentence fragments: 26.51M |
|
""" |
|
_HOMEPAGE_URL = "http://opus.nlpl.eu/EMEA.php" |
|
_CITATION = """\ |
|
J. Tiedemann, 2012, Parallel Data, Tools and Interfaces in OPUS. In Proceedings of the 8th International Conference on Language Resources and Evaluation (LREC 2012) |
|
""" |
|
|
|
_VERSION = "3.0.0" |
|
_BASE_NAME = "EMEA.{}.{}" |
|
_BASE_URL = "https://object.pouta.csc.fi/OPUS-EMEA/v3/moses/{}-{}.txt.zip" |
|
|
|
|
|
_LANGUAGE_PAIRS = [ |
|
("bg", "el"), |
|
("cs", "et"), |
|
("de", "mt"), |
|
("fr", "sk"), |
|
("es", "lt"), |
|
] |
|
|
|
|
|
class EmeaConfig(datasets.BuilderConfig): |
|
def __init__(self, *args, lang1=None, lang2=None, **kwargs): |
|
super().__init__( |
|
*args, |
|
name=f"{lang1}-{lang2}", |
|
**kwargs, |
|
) |
|
self.lang1 = lang1 |
|
self.lang2 = lang2 |
|
|
|
|
|
class Emea(datasets.GeneratorBasedBuilder): |
|
BUILDER_CONFIGS = [ |
|
EmeaConfig( |
|
lang1=lang1, |
|
lang2=lang2, |
|
description=f"Translating {lang1} to {lang2} or vice versa", |
|
version=datasets.Version(_VERSION), |
|
) |
|
for lang1, lang2 in _LANGUAGE_PAIRS |
|
] |
|
BUILDER_CONFIG_CLASS = EmeaConfig |
|
|
|
def _info(self): |
|
return datasets.DatasetInfo( |
|
description=_DESCRIPTION, |
|
features=datasets.Features( |
|
{ |
|
"id": datasets.Value("string"), |
|
"translation": datasets.Translation(languages=(self.config.lang1, self.config.lang2)), |
|
}, |
|
), |
|
supervised_keys=None, |
|
homepage=_HOMEPAGE_URL, |
|
citation=_CITATION, |
|
) |
|
|
|
def _split_generators(self, dl_manager): |
|
def _base_url(lang1, lang2): |
|
return _BASE_URL.format(lang1, lang2) |
|
|
|
download_url = _base_url(self.config.lang1, self.config.lang2) |
|
path = dl_manager.download_and_extract(download_url) |
|
return [ |
|
datasets.SplitGenerator( |
|
name=datasets.Split.TRAIN, |
|
gen_kwargs={"datapath": path}, |
|
) |
|
] |
|
|
|
def _generate_examples(self, datapath): |
|
l1, l2 = self.config.lang1, self.config.lang2 |
|
folder = l1 + "-" + l2 |
|
l1_file = _BASE_NAME.format(folder, l1) |
|
l2_file = _BASE_NAME.format(folder, l2) |
|
l1_path = os.path.join(datapath, l1_file) |
|
l2_path = os.path.join(datapath, l2_file) |
|
with open(l1_path, encoding="utf-8") as f1, open(l2_path, encoding="utf-8") as f2: |
|
for sentence_counter, (x, y) in enumerate(zip(f1, f2)): |
|
x = x.strip() |
|
y = y.strip() |
|
result = ( |
|
sentence_counter, |
|
{ |
|
"id": str(sentence_counter), |
|
"translation": {l1: x, l2: y}, |
|
}, |
|
) |
|
yield result |
|
|