# coding=utf-8 """Hansel: A Chinese Few-Shot and Zero-Shot Entity Linking Benchmark""" import json import os import datasets _HANSEL_CITATION = """\ @misc{xu2022hansel, title = {Hansel: A Chinese Few-Shot and Zero-Shot Entity Linking Benchmark}, author = {Xu, Zhenran and Shan, Zifei and Li, Yuxin and Hu, Baotian and Qin, Bing}, publisher = {arXiv}, year = {2022}, url = {https://arxiv.org/abs/2207.13005} } """ _HANSEL_DESCRIPTION = """\ Hansel is a high-quality human-annotated Chinese entity linking (EL) dataset, used for testing Chinese EL systems' generalization ability to tail entities and emerging entities. The test set contains Few-shot (FS) and zero-shot (ZS) slices, has 10K examples and uses Wikidata as the corresponding knowledge base. The training and validation sets are from Wikipedia hyperlinks, useful for large-scale pretraining of Chinese EL systems. """ _URLS = { "train": "hansel-train.jsonl", "val": "hansel-val.jsonl", "hansel-fs": "hansel-few-shot-v1.jsonl", "hansel-zs": "hansel-zero-shot-v1.jsonl", } logger = datasets.logging.get_logger(__name__) class HanselConfig(datasets.BuilderConfig): """BuilderConfig for HanselConfig.""" def __init__(self, features, data_url, citation, url, **kwargs): """BuilderConfig for Hansel. Args: features: `list[string]`, list of the features that will appear in the feature dict. Should not include "label". data_url: `string`, url to download the zip file from. citation: `string`, citation for the data set. url: `string`, url for information about the data set. **kwargs: keyword arguments forwarded to super. """ super(HanselConfig, self).__init__(version=datasets.Version("1.0.0"), **kwargs) self.features = features self.data_url = data_url self.citation = citation self.url = url class Hansel(datasets.GeneratorBasedBuilder): """The Hansel benchmark.""" BUILDER_CONFIGS = [ HanselConfig( name="wiki", description=_HANSEL_DESCRIPTION, features=["id", "text", "start", "end", "mention", "gold_id"], data_url="https://huggingface.co./datasets/HIT-TMG/Hansel/blob/main/", citation=_HANSEL_CITATION, url="https://github.com/HITsz-TMG/Hansel", ), HanselConfig( name="hansel-few-shot", description=_HANSEL_DESCRIPTION, features=["id", "text", "start", "end", "mention", "gold_id", "source", "domain"], data_url="https://huggingface.co./datasets/HIT-TMG/Hansel/blob/main/", citation=_HANSEL_CITATION, url="https://github.com/HITsz-TMG/Hansel", ), HanselConfig( name="hansel-zero-shot", description=_HANSEL_DESCRIPTION, features=["id", "text", "start", "end", "mention", "gold_id", "source", "domain"], data_url="https://huggingface.co./datasets/HIT-TMG/Hansel/blob/main/", citation=_HANSEL_CITATION, url="https://github.com/HITsz-TMG/Hansel", ) ] def _info(self): features = {feature: datasets.Value("string") for feature in self.config.features} features["start"] = datasets.Value("int64") features["end"] = datasets.Value("int64") return datasets.DatasetInfo( description=self.config.description, features=datasets.Features(features), homepage=self.config.url, citation=self.config.citation ) def _split_generators(self, dl_manager): urls_to_download = _URLS downloaded_files = dl_manager.download_and_extract(urls_to_download) if "hansel-few" in self.config.name: return [ datasets.SplitGenerator( name=datasets.Split.TEST, gen_kwargs={ "data_file": downloaded_files["hansel-fs"], "split": datasets.Split.TEST, }, ), ] if "hansel-zero" in self.config.name: return [ datasets.SplitGenerator( name=datasets.Split.TEST, gen_kwargs={ "data_file": downloaded_files["hansel-zs"], "split": datasets.Split.TEST, }, ), ] return [ datasets.SplitGenerator( name=datasets.Split.TRAIN, gen_kwargs={ "data_file": downloaded_files["train"], "split": datasets.Split.TRAIN, }, ), datasets.SplitGenerator( name=datasets.Split.VALIDATION, gen_kwargs={ "data_file": downloaded_files["val"], "split": datasets.Split.VALIDATION, }, ), ] def _generate_examples(self, data_file, split): logger.info("generating examples from = %s", data_file) with open(data_file, encoding="utf-8") as f: for idx, line in enumerate(f): temDict = json.loads(line) yield idx, temDict