Datasets:

Modalities:
Tabular
Text
Languages:
Chinese
ArXiv:
Libraries:
Datasets
License:
File size: 5,329 Bytes
bc46cd3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
698f33d
bc46cd3
 
 
 
 
 
 
698f33d
bc46cd3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9d1dd27
bc46cd3
 
 
 
 
 
 
b1c7874
bc46cd3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2e1facf
bc46cd3
2e1facf
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
# coding=utf-8

"""Hansel: A Chinese Few-Shot and Zero-Shot Entity Linking Benchmark"""


import json
import os

import datasets



_HANSEL_CITATION = """\
@misc{xu2022hansel,
  title = {Hansel: A Chinese Few-Shot and Zero-Shot Entity Linking Benchmark},
  author = {Xu, Zhenran and Shan, Zifei and Li, Yuxin and Hu, Baotian and Qin, Bing},
  publisher = {arXiv},
  year = {2022},
  url = {https://arxiv.org/abs/2207.13005}
}

"""

_HANSEL_DESCRIPTION = """\
Hansel is a high-quality human-annotated Chinese entity linking (EL) dataset, used for testing Chinese EL systems' generalization ability to tail entities and emerging entities.
The test set contains Few-shot (FS) and zero-shot (ZS) slices, has 10K examples and uses Wikidata as the corresponding knowledge base.
The training and validation sets are from Wikipedia hyperlinks, useful for large-scale pretraining of Chinese EL systems.

"""


_URLS = {
    "train": "hansel-train.jsonl",
    "val": "hansel-val.jsonl",
    "hansel-fs": "hansel-few-shot-v1.jsonl",
    "hansel-zs": "hansel-zero-shot-v1.jsonl",
}

logger = datasets.logging.get_logger(__name__)


class HanselConfig(datasets.BuilderConfig):
    """BuilderConfig for HanselConfig."""

    def __init__(self, features, data_url, citation, url, **kwargs):
        """BuilderConfig for Hansel.

        Args:
          features: `list[string]`, list of the features that will appear in the
            feature dict. Should not include "label".
          data_url: `string`, url to download the zip file from.
          citation: `string`, citation for the data set.
          url: `string`, url for information about the data set.
          **kwargs: keyword arguments forwarded to super.
        """
        super(HanselConfig, self).__init__(version=datasets.Version("1.0.0"), **kwargs)
        self.features = features
        self.data_url = data_url
        self.citation = citation
        self.url = url


class Hansel(datasets.GeneratorBasedBuilder):
    """The Hansel benchmark."""

    BUILDER_CONFIGS = [
        HanselConfig(
            name="wiki",
            description=_HANSEL_DESCRIPTION,
            features=["id", "text", "start", "end", "mention", "gold_id"],
            data_url="https://huggingface.co./datasets/HIT-TMG/Hansel/blob/main/",
            citation=_HANSEL_CITATION,
            url="https://github.com/HITsz-TMG/Hansel",
        ),
        HanselConfig(
            name="hansel-few-shot",
            description=_HANSEL_DESCRIPTION,
            features=["id", "text", "start", "end", "mention", "gold_id", "source", "domain"],
            data_url="https://huggingface.co./datasets/HIT-TMG/Hansel/blob/main/",
            citation=_HANSEL_CITATION,
            url="https://github.com/HITsz-TMG/Hansel",
        ),
        HanselConfig(
            name="hansel-zero-shot",
            description=_HANSEL_DESCRIPTION,
            features=["id", "text", "start", "end", "mention", "gold_id", "source", "domain"],
            data_url="https://huggingface.co./datasets/HIT-TMG/Hansel/blob/main/",
            citation=_HANSEL_CITATION,
            url="https://github.com/HITsz-TMG/Hansel",
        )
    ]

    def _info(self):
        features = {feature: datasets.Value("string") for feature in self.config.features}
        features["start"] = datasets.Value("int64")
        features["end"] = datasets.Value("int64")

        return datasets.DatasetInfo(
            description=self.config.description,
            features=datasets.Features(features),
            homepage=self.config.url,
            citation=self.config.citation
        )


    def _split_generators(self, dl_manager):

        urls_to_download = _URLS
        downloaded_files = dl_manager.download_and_extract(urls_to_download)

        if "hansel-few" in self.config.name:
            return [
                datasets.SplitGenerator(
                    name=datasets.Split.TEST,
                    gen_kwargs={
                        "data_file": downloaded_files["hansel-fs"],
                        "split": datasets.Split.TEST,
                    },
                ),
            ]
        if "hansel-zero" in self.config.name:
            return [
                datasets.SplitGenerator(
                    name=datasets.Split.TEST,
                    gen_kwargs={
                        "data_file": downloaded_files["hansel-zs"],
                        "split": datasets.Split.TEST,
                    },
                ),
            ]
        return [
            datasets.SplitGenerator(
                name=datasets.Split.TRAIN,
                gen_kwargs={
                    "data_file": downloaded_files["train"],
                    "split": datasets.Split.TRAIN,
                },
            ),
            datasets.SplitGenerator(
                name=datasets.Split.VALIDATION,
                gen_kwargs={
                    "data_file": downloaded_files["val"],
                    "split": datasets.Split.VALIDATION,
                },
            ),
        ]

    def _generate_examples(self, data_file, split):
        logger.info("generating examples from = %s", data_file)
        with open(data_file, encoding="utf-8") as f:
            for idx, line in enumerate(f):
                temDict = json.loads(line)
                yield idx, temDict