File size: 1,663 Bytes
c3c71a0 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 |
base_model: TinyLlama/TinyLlama-1.1B-intermediate-step-1431k-3T
model_type: LlamaForCausalLM
tokenizer_type: LlamaTokenizer
is_llama_derived_model: true
load_in_8bit: false
load_in_4bit: true
strict: false
datasets:
- path: Guytron/RosettaCodeDataSet1
type: json # Assuming the dataset is in JSON format
dataset_prepared_path:
val_set_size: 0.05
output_dir: ./qlora-out-rosetta
adapter: qlora
lora_model_dir:
sequence_len: 2048 # Increased to accommodate potentially longer code samples
sample_packing: true
pad_to_sequence_len: true
lora_r: 32
lora_alpha: 16
lora_dropout: 0.05
lora_target_modules:
lora_target_linear: true
lora_fan_in_fan_out:
wandb_project: rosetta-code-training
wandb_entity:
wandb_watch:
wandb_name: rosetta-code-run-1
wandb_log_model:
mlflow_experiment_name: rosetta-code-experiment
gradient_accumulation_steps: 4 # Increased to handle larger dataset
micro_batch_size: 2 # Adjusted based on your GPU memory
num_epochs: 3
max_steps: -1 # Set to -1 to train on the entire dataset
optimizer: paged_adamw_32bit
lr_scheduler: cosine
learning_rate: 0.0002
train_on_inputs: false
group_by_length: true # Changed to true for efficiency with varying length samples
bf16: false
fp16: true
tf32: false
gradient_checkpointing: true
early_stopping_patience:
resume_from_checkpoint:
local_rank:
logging_steps: 10
xformers_attention:
flash_attention: false
warmup_steps: 100 # Increased for a larger dataset
evals_per_epoch: 1
saves_per_epoch: 1
debug:
deepspeed:
weight_decay: 0.01 # Added some weight decay for regularization
fsdp:
fsdp_config:
special_tokens: |