Datasets:
Gholamreza
commited on
Commit
•
cfa02b2
1
Parent(s):
2aeffe9
Create pquad.py
Browse files
pquad.py
ADDED
@@ -0,0 +1,99 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Taken from https://huggingface.co/datasets/Shayanvsf/pquad_public/raw/main/pquad_public.py
|
2 |
+
# Edited for the complete dataset (22MB Train.csv)
|
3 |
+
# By Gholamreza Dar
|
4 |
+
# Feb 2023
|
5 |
+
|
6 |
+
import json
|
7 |
+
import datasets
|
8 |
+
_CITATION = """\
|
9 |
+
@article{darvishi2022pquad,
|
10 |
+
title={PQuAD: A Persian Question Answering Dataset},
|
11 |
+
author={Darvishi, Kasra and Shahbodagh, Newsha and Abbasiantaeb, Zahra and Momtazi, Saeedeh},
|
12 |
+
journal={arXiv preprint arXiv:2202.06219},
|
13 |
+
year={2022}
|
14 |
+
}
|
15 |
+
"""
|
16 |
+
_DESCRIPTION = """\\\\
|
17 |
+
PQuAD: PQuAD is a crowd-sourced reading comprehension dataset on Persian Language.
|
18 |
+
"""
|
19 |
+
_URL = "https://raw.githubusercontent.com/AUT-NLP/PQuAD/main/Dataset/"
|
20 |
+
_URLS = {
|
21 |
+
"train": _URL + "Train.json",
|
22 |
+
"validation":_URL + "Validation.json",
|
23 |
+
"test": _URL + "Test.json",
|
24 |
+
}
|
25 |
+
class pquad_public_Config(datasets.BuilderConfig):
|
26 |
+
"""BuilderConfig for PQuAD."""
|
27 |
+
def __init__(self, **kwargs):
|
28 |
+
"""BuilderConfig for PQuAD.
|
29 |
+
Args:
|
30 |
+
**kwargs: keyword arguments forwarded to super.
|
31 |
+
"""
|
32 |
+
super(pquad_public_Config, self).__init__(**kwargs)
|
33 |
+
class pquad_public(datasets.GeneratorBasedBuilder):
|
34 |
+
BUILDER_CONFIGS = [
|
35 |
+
pquad_public_Config(name="pquad", version=datasets.Version("1.0.0"), description="PQuAD"),
|
36 |
+
]
|
37 |
+
def _info(self):
|
38 |
+
return datasets.DatasetInfo(
|
39 |
+
# This is the description that will appear on the datasets page.
|
40 |
+
description=_DESCRIPTION,
|
41 |
+
# datasets.features.FeatureConnectors
|
42 |
+
features=datasets.Features(
|
43 |
+
{
|
44 |
+
"id": datasets.Value("float64"),
|
45 |
+
"title": datasets.Value("string"),
|
46 |
+
"context": datasets.Value("string"),
|
47 |
+
"question": datasets.Value("string"),
|
48 |
+
"answers": datasets.features.Sequence(
|
49 |
+
{
|
50 |
+
"text": datasets.Value("string"),
|
51 |
+
"answer_start": datasets.Value("int32"),
|
52 |
+
}
|
53 |
+
),
|
54 |
+
}
|
55 |
+
),
|
56 |
+
supervised_keys=None,
|
57 |
+
# Homepage of the dataset for documentation
|
58 |
+
homepage="https://github.com/AUT-NLP/PQuAD",
|
59 |
+
citation=_CITATION,
|
60 |
+
)
|
61 |
+
def _split_generators(self, dl_manager):
|
62 |
+
"""Returns SplitGenerators."""
|
63 |
+
# TODO(persian_qa): Downloads the data and defines the splits
|
64 |
+
# dl_manager is a datasets.download.DownloadManager that can be used to
|
65 |
+
# download and extract URLs
|
66 |
+
urls_to_download = _URLS
|
67 |
+
downloaded_files = dl_manager.download_and_extract(urls_to_download)
|
68 |
+
return [
|
69 |
+
datasets.SplitGenerator(name=datasets.Split.TRAIN, gen_kwargs={"filepath": downloaded_files["train"]}),
|
70 |
+
datasets.SplitGenerator(name=datasets.Split.VALIDATION, gen_kwargs={"filepath": downloaded_files["validation"]}),
|
71 |
+
datasets.SplitGenerator(name=datasets.Split.TEST, gen_kwargs={"filepath": downloaded_files["test"]})
|
72 |
+
]
|
73 |
+
def _generate_examples(self, filepath):
|
74 |
+
"""Yields examples."""
|
75 |
+
# TODO(persian_qa): Yields (key, example) tuples from the dataset
|
76 |
+
with open(filepath, encoding="utf-8") as f:
|
77 |
+
print(filepath)
|
78 |
+
squad = json.load(f)
|
79 |
+
for example in squad["data"]:
|
80 |
+
title = example.get("title", "").strip()
|
81 |
+
for paragraph in example["paragraphs"]:
|
82 |
+
context = paragraph["context"].strip()
|
83 |
+
for qa in paragraph["qas"]:
|
84 |
+
question = qa["question"].strip()
|
85 |
+
id_ = qa["id"]
|
86 |
+
answer_starts = [answer["answer_start"] for answer in qa["answers"]]
|
87 |
+
answers = [answer["text"].strip() for answer in qa["answers"]]
|
88 |
+
# Features currently used are "context", "question", and "answers".
|
89 |
+
# Others are extracted here for the ease of future expansions.
|
90 |
+
yield id_, {
|
91 |
+
"title": title,
|
92 |
+
"context": context,
|
93 |
+
"question": question,
|
94 |
+
"id": id_,
|
95 |
+
"answers": {
|
96 |
+
"answer_start": answer_starts,
|
97 |
+
"text": answers,
|
98 |
+
},
|
99 |
+
}
|