|
|
|
|
|
|
|
|
|
|
|
import json |
|
import datasets |
|
_CITATION = """\ |
|
@article{darvishi2022pquad, |
|
title={PQuAD: A Persian Question Answering Dataset}, |
|
author={Darvishi, Kasra and Shahbodagh, Newsha and Abbasiantaeb, Zahra and Momtazi, Saeedeh}, |
|
journal={arXiv preprint arXiv:2202.06219}, |
|
year={2022} |
|
} |
|
""" |
|
_DESCRIPTION = """\\\\ |
|
PQuAD: PQuAD is a crowd-sourced reading comprehension dataset on Persian Language. |
|
""" |
|
_URL = "https://raw.githubusercontent.com/AUT-NLP/PQuAD/main/Dataset/" |
|
_URLS = { |
|
"train": _URL + "Train.json", |
|
"validation":_URL + "Validation.json", |
|
"test": _URL + "Test.json", |
|
} |
|
class pquad_public_Config(datasets.BuilderConfig): |
|
"""BuilderConfig for PQuAD.""" |
|
def __init__(self, **kwargs): |
|
"""BuilderConfig for PQuAD. |
|
Args: |
|
**kwargs: keyword arguments forwarded to super. |
|
""" |
|
super(pquad_public_Config, self).__init__(**kwargs) |
|
class pquad_public(datasets.GeneratorBasedBuilder): |
|
BUILDER_CONFIGS = [ |
|
pquad_public_Config(name="pquad", version=datasets.Version("1.0.0"), description="PQuAD"), |
|
] |
|
def _info(self): |
|
return datasets.DatasetInfo( |
|
|
|
description=_DESCRIPTION, |
|
|
|
features=datasets.Features( |
|
{ |
|
"id": datasets.Value("float64"), |
|
"title": datasets.Value("string"), |
|
"context": datasets.Value("string"), |
|
"question": datasets.Value("string"), |
|
"answers": datasets.features.Sequence( |
|
{ |
|
"text": datasets.Value("string"), |
|
"answer_start": datasets.Value("int32"), |
|
} |
|
), |
|
} |
|
), |
|
supervised_keys=None, |
|
|
|
homepage="https://github.com/AUT-NLP/PQuAD", |
|
citation=_CITATION, |
|
) |
|
def _split_generators(self, dl_manager): |
|
"""Returns SplitGenerators.""" |
|
|
|
|
|
|
|
urls_to_download = _URLS |
|
downloaded_files = dl_manager.download_and_extract(urls_to_download) |
|
return [ |
|
datasets.SplitGenerator(name=datasets.Split.TRAIN, gen_kwargs={"filepath": downloaded_files["train"]}), |
|
datasets.SplitGenerator(name=datasets.Split.VALIDATION, gen_kwargs={"filepath": downloaded_files["validation"]}), |
|
datasets.SplitGenerator(name=datasets.Split.TEST, gen_kwargs={"filepath": downloaded_files["test"]}) |
|
] |
|
def _generate_examples(self, filepath): |
|
"""Yields examples.""" |
|
|
|
with open(filepath, encoding="utf-8") as f: |
|
print(filepath) |
|
squad = json.load(f) |
|
for example in squad["data"]: |
|
title = example.get("title", "").strip() |
|
for paragraph in example["paragraphs"]: |
|
context = paragraph["context"].strip() |
|
for qa in paragraph["qas"]: |
|
question = qa["question"].strip() |
|
id_ = qa["id"] |
|
answer_starts = [answer["answer_start"] for answer in qa["answers"]] |
|
answers = [answer["text"].strip() for answer in qa["answers"]] |
|
|
|
|
|
yield id_, { |
|
"title": title, |
|
"context": context, |
|
"question": question, |
|
"id": id_, |
|
"answers": { |
|
"answer_start": answer_starts, |
|
"text": answers, |
|
}, |
|
} |
|
|