Datasets:

Languages:
English
Tags:
Not-For-All-Audiences
License:
Gaeros commited on
Commit
5d17565
1 Parent(s): e16abe2

normalize_tags: add config file, update readme.

Browse files
Files changed (5) hide show
  1. README.md +94 -8
  2. e6db/utils/__init__.py +51 -41
  3. normalize.toml +92 -0
  4. normalize_tags.py +319 -175
  5. query_tags.py +19 -2
README.md CHANGED
@@ -12,28 +12,114 @@ tags:
12
 
13
  # E6DB
14
 
15
- This a dataset is compiled from the e621 database. It currently provides indexes
16
- for normalizing tags and embeddings for finding similar tags.
 
 
 
 
 
 
 
17
 
18
  ## Utilities
19
 
20
  ### `query_tags.py`
21
 
22
- A small command-line utility that finds related tags and generates 2D plots illustrating tag relationships through local PCA projection. It utilizes collaborative filtering embeddings, [computed with alternating least squares](./notebooks/AltLstSq.ipynb).
 
 
 
23
 
24
- When only tags are provided as arguments, it displays the top-k most similar tags (where k is set with `-k`). By using `-o plot.png` or `-o -`, it saves or displays a 2D plot showing the local projection of the query and related tags.
 
 
25
 
26
- Tag categories are represented with the e621 color scheme. Results can be filtered based on one or more categories using the `-c` flag once or multiple times. The `-f` flag sets a post count threshold.
 
 
27
 
28
  Filtering occurs in the following sequence:
29
 
30
- - Tags used fewer than twice are excluded from the dataset; tags with a post count lower than the `-f` threshold are also discarded.
 
31
  - If a category filter is specified, only matching tags are retained.
32
  - For each query tag, the most `-k` similar neighboring tags are selected.
33
- - The per-query neighbors are printed, and if no plot is being generated, filtering halts at this point.
34
- - Similarity scores are aggregated across queries, and the `-n` tags closest to all queries are chosen for the PCA.
 
 
35
  - Only the highest `-N` scoring tags are displayed in the plot.
36
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
37
  ### `e6db.utils`
38
 
39
  This [module](./e6db/utils/__init__.py) contains utilities for loading the provided data and use it to normalize tag sets.
 
12
 
13
  # E6DB
14
 
15
+ This a dataset is compiled from the e621 database. It currently provides
16
+ utilities and indexes for normalizing tags and embeddings for finding similar
17
+ tags.
18
+
19
+ ## Installation
20
+
21
+ Please clone with `git` after having installed
22
+ [`git-lfs`](https://docs.github.com/en/repositories/working-with-files/managing-large-files/installing-git-large-file-storage).
23
+ Do not download the github zip, it doesn't contain the data files.
24
 
25
  ## Utilities
26
 
27
  ### `query_tags.py`
28
 
29
+ A small command-line utility that finds related tags and generates 2D plots
30
+ illustrating tag relationships through local PCA projection. It utilizes
31
+ collaborative filtering embeddings, [computed with alternating least
32
+ squares](./notebooks/AltLstSq.ipynb).
33
 
34
+ When only tags are provided as arguments, it displays the top-k most similar
35
+ tags (where k is set with `-k`). By using `-o plot.png` or `-o -`, it saves or
36
+ displays a 2D plot showing the local projection of the query and related tags.
37
 
38
+ Tag categories are represented with the e621 color scheme. Results can be
39
+ filtered based on one or more categories using the `-c` flag once or multiple
40
+ times. The `-f` flag sets a post count threshold.
41
 
42
  Filtering occurs in the following sequence:
43
 
44
+ - Tags used fewer than twice are excluded from the dataset; tags with a post
45
+ count lower than the `-f` threshold are also discarded.
46
  - If a category filter is specified, only matching tags are retained.
47
  - For each query tag, the most `-k` similar neighboring tags are selected.
48
+ - The per-query neighbors are printed, and if no plot is being generated,
49
+ filtering halts at this point.
50
+ - Similarity scores are aggregated across queries, and the `-n` tags closest to
51
+ all queries are chosen for the PCA.
52
  - Only the highest `-N` scoring tags are displayed in the plot.
53
 
54
+ ### `normalize_tags.py`
55
+
56
+ Tag Normalizer is a powerful command-line tool designed to clean, standardize,
57
+ and normalize e621 tags in text files. By applying a set of customizable rules,
58
+ Tag Normalizer helps maintain consistency and improve the quality of your tag
59
+ data.
60
+
61
+ #### Usage
62
+
63
+ ```
64
+ python normalize_tags.py <path to input dataset> <path to output normalized tags> -s unknown
65
+ ```
66
+
67
+ Find all `*.txt` and `*.cap*` files in `<path to input dataset>` and write the
68
+ normalized files in `<path to output normalized tags>` while reproducing the
69
+ folder hierarchy. Additionally, `-s unknown` writes to the standard output the
70
+ the top 100 unrecognized tags. `-s meta` will show the top 100 meta tags, while
71
+ `-k 50` alone will show the top 50 for all categories.
72
+
73
+ You can specify the same folder for input and output, and use `-f` to skip
74
+ confirmation.
75
+
76
+ #### Configuration
77
+
78
+ Tag Normalizer uses a TOML configuration file to customize its behavior. By
79
+ default, it looks for `normalize.toml` in the following locations:
80
+
81
+ 1. The path specified by the `-c` or `--config` option
82
+ 2. The output directory
83
+ 3. The input directory
84
+ 4. The current directory (most likely the example one)
85
+
86
+ Here's a brief overview of the main configuration options:
87
+
88
+ - `blacklist`: List of tags to remove
89
+ - `blacklist_regexp`: Regular expressions for blacklisting tags
90
+ - `keep_underscores`: List of tags where underscores should be preserved
91
+ - `blacklist_categories`: Categories of tags to remove entirely
92
+ - `remove_parens_suffix_for_categories`: Categories where parenthetical suffixes
93
+ should be removed
94
+ - `aliases`: Define tag aliases
95
+ - `aliases_overrides`: Define aliases that can override existing tag meanings
96
+ - `renames`: Specify tags to be renamed in the output
97
+ - `use_underscores`: Whether to use underscores or spaces in output tags
98
+ - `keep_implied`: Whether to keep or remove implied tags, may also be a list of
99
+ tags to keep even when implied by another one
100
+ - `on_alias_conflict`: How to handle conflicts when creating aliases
101
+ - `artist_by_prefix`: Whether to add "by\_" prefix to artist tags
102
+ - `blacklist_implied`: Whether to also blacklist tags implied by blacklisted
103
+ tags
104
+
105
+ For a detailed explanation of each option, refer to the comments in the
106
+ `normalize.toml` file. It contains the default values with some opinionated
107
+ changes.
108
+
109
+ #### Command-line Options
110
+
111
+ - `-c`, `--config`: Specify a custom configuration file (default: looks for
112
+ `normalize.toml` in output dir, input dir, or current dir)
113
+ - `-v`, `--verbose`: Enable verbose logging
114
+ - `-f`, `--force`: Don't ask for confirmation when overwriting input files
115
+ - `-b`, `--print-blacklist`: Print the effective list of blacklisted tags
116
+ - `-k`, `--print-topk [N]`: Print the N most common tags (default: 100 if no
117
+ value provided)
118
+ - `-s`, `--stats-categories <cat>`: Restrict tag count printing to specific
119
+ categories (or `unknown` for non e621 tags)
120
+ - `-j`, `--print-implied-topk [N]`: Print the N most common implied tags
121
+ (default: 100 if no value provided)
122
+
123
  ### `e6db.utils`
124
 
125
  This [module](./e6db/utils/__init__.py) contains utilities for loading the provided data and use it to normalize tag sets.
e6db/utils/__init__.py CHANGED
@@ -4,8 +4,12 @@ import gzip
4
  import json
5
  import warnings
6
  import math
 
7
  from typing import Callable, Iterable
8
 
 
 
 
9
  tag_categories = [
10
  "general",
11
  "artist",
@@ -62,6 +66,7 @@ def load_tags(data_dir):
62
  tag2idx = json.load(fp)
63
  with gzip.open(data_dir / "tags_categories.bin.gz", "rb") as fp:
64
  tag_categories = fp.read()
 
65
  return tag2idx, idx2tag, tag_categories
66
 
67
 
@@ -81,6 +86,9 @@ def load_implications(data_dir):
81
  implications = {int(k): v for k, v in implications.items()}
82
  with gzip.open(data_dir / "implications_rej.json.gz", "rb") as fp:
83
  implications_rej = json.load(fp)
 
 
 
84
  return implications, implications_rej
85
 
86
 
@@ -100,7 +108,8 @@ def tag_freq_to_rank(freq: int) -> float:
100
  )
101
 
102
 
103
- MapFun = Callable[[str, int | None], str | list[str]]
 
104
 
105
 
106
  class TagNormalizer:
@@ -173,28 +182,37 @@ class TagNormalizer:
173
  if on_conflict == "raise":
174
  raise ValueError(msg)
175
  elif on_conflict == "warn":
176
- warnings.warn(msg)
177
  elif on_conflict == "overwrite_rarest" and to_tid > conflict:
178
  continue
179
  elif on_conflict != "overwrite":
180
  continue
181
  tag2idx[tag] = to_tid
182
 
 
 
 
 
 
 
 
 
 
 
183
  def rename_output(self, orig: int | str, dest: str):
184
  """Change the tag string associated with an id. Used by `decode`."""
185
  if not isinstance(orig, int):
186
  orig = self.tag2idx[orig]
187
  self.idx2tag[orig] = dest
188
 
189
- def map_inputs(self, mapfun: MapFun, on_conflict="raise") -> "TagNormalizer":
190
  res = type(self)(({}, self.idx2tag, self.tag_categories))
191
  for tag, tid in self.tag2idx.items():
192
  res.add_input_mappings(mapfun(tag, tid), tid, on_conflict=on_conflict)
193
  return res
194
 
195
- def map_outputs(self, mapfun: MapFun) -> "TagNormalizer":
196
- idx2tag_gen = (mapfun(t, i) for i, t in enumerate(self.idx2tag))
197
- idx2tag = [t if isinstance(t, str) else t[0] for t in idx2tag_gen]
198
  return type(self)((self.tag2idx, idx2tag, self.tag_categories))
199
 
200
  def get(self, key: int | str, default=None):
@@ -218,9 +236,9 @@ class TagSetNormalizer:
218
  data = path_or_data
219
  self.tag_normalizer, self.implications, self.implications_rej = data
220
 
221
- def map_implicaitons_rej(
222
- self, mapfun: MapFun, on_conflict="raise"
223
- ) -> "TagSetNormalizer":
224
  implications_rej: dict[str, list[str]] = {}
225
  for tag_string, implied_ids in self.implications_rej.items():
226
  for new_tag_string in mapfun(tag_string, None):
@@ -235,36 +253,22 @@ class TagSetNormalizer:
235
  continue
236
  implications_rej[new_tag_string] = implied_ids
237
 
238
- return type(self)((self.tag_normalizer, self.implications, implications_rej))
239
-
240
- def map_tags(
241
- self, mapfun: MapFun, map_input=True, map_output=True, on_conflict="raise"
242
- ) -> "TagSetNormalizer":
243
- """Apply a function to all tag strings.
244
-
245
- The provided function will be run on:
246
 
247
- * The of list output tag strings,
248
- * Keys from the dictionary mapping strings to ids, contains canonical
249
- tag and aliases,
250
- * Implication source tags that are not used frequently enough to get an
251
- id assigned (less than twice).
252
 
253
- The function should return a list, where the first string is the
254
- canonical tag used in the output, the others are additional aliases
255
- used for recognizing the tag.
256
- """
257
- tag_normalizer = self.tag_normalizer
258
- if map_input:
259
- tag_normalizer = tag_normalizer.map_inputs(mapfun, on_conflict=on_conflict)
260
- if map_output:
261
- tag_normalizer = tag_normalizer.map_outputs(mapfun)
262
- res = type(self)((tag_normalizer, self.implications, self.implications_rej))
263
- if map_input:
264
- res = res.map_implicaitons_rej(mapfun, on_conflict=on_conflict)
265
- return res
266
 
267
- def encode(self, tags: Iterable[str], keep_implied=False):
 
 
268
  """
269
  Encode a list of string as numerical ids and strip implied tags.
270
 
@@ -277,17 +281,23 @@ class TagSetNormalizer:
277
  """
278
  implied = set()
279
  res = []
 
 
 
280
  for tag in tags:
281
- tag = self.tag_normalizer.encode(tag, tag)
282
  implied.update(
283
- self.implications.get(tag, ())
284
  if isinstance(tag, int)
285
- else self.implications_rej.get(tag, ())
286
  )
287
  res.append(tag)
288
  if not keep_implied:
289
  res = [t for t in res if t not in implied]
 
 
290
  return res, implied
291
 
292
- def decode(self, tags):
293
- return [self.tag_normalizer.decode(t) for t in tags]
 
 
4
  import json
5
  import warnings
6
  import math
7
+ import logging
8
  from typing import Callable, Iterable
9
 
10
+
11
+ logger = logging.getLogger(__name__)
12
+
13
  tag_categories = [
14
  "general",
15
  "artist",
 
66
  tag2idx = json.load(fp)
67
  with gzip.open(data_dir / "tags_categories.bin.gz", "rb") as fp:
68
  tag_categories = fp.read()
69
+ logging.info(f"Loaded {len(idx2tag)} tags, {len(tag2idx)} tag2id mappings")
70
  return tag2idx, idx2tag, tag_categories
71
 
72
 
 
86
  implications = {int(k): v for k, v in implications.items()}
87
  with gzip.open(data_dir / "implications_rej.json.gz", "rb") as fp:
88
  implications_rej = json.load(fp)
89
+ logger.info(
90
+ f"Loaded {len(implications)} implications + {len(implications_rej)} implication from tags without id"
91
+ )
92
  return implications, implications_rej
93
 
94
 
 
108
  )
109
 
110
 
111
+ InMapFun = Callable[[str, int | None], list[str]]
112
+ OutMapFun = Callable[[str], list[str]]
113
 
114
 
115
  class TagNormalizer:
 
182
  if on_conflict == "raise":
183
  raise ValueError(msg)
184
  elif on_conflict == "warn":
185
+ logger.warning(msg)
186
  elif on_conflict == "overwrite_rarest" and to_tid > conflict:
187
  continue
188
  elif on_conflict != "overwrite":
189
  continue
190
  tag2idx[tag] = to_tid
191
 
192
+ def remove_input_mappings(self, tags: str | Iterable[str]):
193
+ """Remove tag strings from the mapping"""
194
+ if isinstance(tags, str):
195
+ tags = (tags,)
196
+ for tag in tags:
197
+ if tag in self.tag2idx:
198
+ del self.tag2idx[tag]
199
+ else:
200
+ logger.warning(f"tag {tag!r} is not a valid tag")
201
+
202
  def rename_output(self, orig: int | str, dest: str):
203
  """Change the tag string associated with an id. Used by `decode`."""
204
  if not isinstance(orig, int):
205
  orig = self.tag2idx[orig]
206
  self.idx2tag[orig] = dest
207
 
208
+ def map_inputs(self, mapfun: InMapFun, on_conflict="raise") -> "TagNormalizer":
209
  res = type(self)(({}, self.idx2tag, self.tag_categories))
210
  for tag, tid in self.tag2idx.items():
211
  res.add_input_mappings(mapfun(tag, tid), tid, on_conflict=on_conflict)
212
  return res
213
 
214
+ def map_outputs(self, mapfun: OutMapFun) -> "TagNormalizer":
215
+ idx2tag = [mapfun(t, i) for i, t in enumerate(self.idx2tag)]
 
216
  return type(self)((self.tag2idx, idx2tag, self.tag_categories))
217
 
218
  def get(self, key: int | str, default=None):
 
236
  data = path_or_data
237
  self.tag_normalizer, self.implications, self.implications_rej = data
238
 
239
+ def map_inputs(self, mapfun: InMapFun, on_conflict="raise") -> "TagSetNormalizer":
240
+ tag_normalizer = self.tag_normalizer.map_inputs(mapfun, on_conflict=on_conflict)
241
+
242
  implications_rej: dict[str, list[str]] = {}
243
  for tag_string, implied_ids in self.implications_rej.items():
244
  for new_tag_string in mapfun(tag_string, None):
 
253
  continue
254
  implications_rej[new_tag_string] = implied_ids
255
 
256
+ res = type(self)((tag_normalizer, self.implications, implications_rej))
257
+ return res
 
 
 
 
 
 
258
 
259
+ def map_outputs(self, mapfun: OutMapFun) -> "TagSetNormalizer":
260
+ tag_normalizer = self.tag_normalizer.map_outputs(mapfun)
261
+ return type(self)((tag_normalizer, self.implications, self.implications_rej))
 
 
262
 
263
+ def get_implied(self, tag: int | str) -> list[int]:
264
+ if isinstance(tag, int):
265
+ return self.implications.get(tag, ())
266
+ else:
267
+ return self.implications_rej.get(tag, ())
 
 
 
 
 
 
 
 
268
 
269
+ def encode(
270
+ self, tags: Iterable[str], keep_implied: bool | set[int] = False
271
+ ) -> tuple[list[int | str], set[int]]:
272
  """
273
  Encode a list of string as numerical ids and strip implied tags.
274
 
 
281
  """
282
  implied = set()
283
  res = []
284
+ encode = self.tag_normalizer.tag2idx.get
285
+ get_implied = self.implications.get
286
+ get_implied_rej = self.implications_rej.get
287
  for tag in tags:
288
+ tag = encode(tag, tag)
289
  implied.update(
290
+ get_implied(tag, ())
291
  if isinstance(tag, int)
292
+ else get_implied_rej(tag, ())
293
  )
294
  res.append(tag)
295
  if not keep_implied:
296
  res = [t for t in res if t not in implied]
297
+ elif isinstance(keep_implied, set):
298
+ res = [t for t in res if t not in implied or t in keep_implied]
299
  return res, implied
300
 
301
+ def decode(self, tags: Iterable[int | str]) -> list[str]:
302
+ idx2tag = self.tag_normalizer.idx2tag
303
+ return [idx2tag[t] if isinstance(t, int) else t for t in tags]
normalize.toml ADDED
@@ -0,0 +1,92 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Tag Normalization Configuration
2
+
3
+ # Blacklist: A list of tags to be removed during normalization
4
+ # These tags will be completely excluded from the output
5
+ # Default: ["invalid tag"]
6
+ blacklist = [
7
+ "invalid tag",
8
+ "by conditional dnp",
9
+ "hi res",
10
+ "absurd res",
11
+ "superabsurd res",
12
+ "4k",
13
+ "uncensored",
14
+ "ambiguous gender",
15
+ "translation edit",
16
+ "story in description",
17
+ "non- balls",
18
+ "non- nipples",
19
+ "non- breasts",
20
+ "feet out of frame",
21
+ "funny_post_number",
22
+ "tagme",
23
+ "edit_request",
24
+ ]
25
+
26
+ # Blacklist Regular Expressions: Tags matching these regexes will be removed
27
+ # These are full-match regexes, so they must match the entire tag
28
+ blacklist_regexp = [
29
+ "(\\d+s?|\\d+:\\d+)", # Numbers, years and aspect ratio
30
+ ".*?_at_source",
31
+ ]
32
+
33
+ # Keep Underscores: List of tags where underscores should be preserved
34
+ # By default, underscores are replaced with spaces unless specified here
35
+ keep_underscores = ["rating_explicit", "rating_questionable", "rating_safe"]
36
+
37
+ # Blacklist Categories: Entire categories of tags to be removed
38
+ # Common categories include "artist", "character", "copyright", "general", "meta", "species", "pool"
39
+ blacklist_categories = ["pool"]
40
+
41
+ # Remove Parentheses Suffix: Categories where parenthetical suffixes should be removed
42
+ # E.g., "character_(series)" becomes just "character" if does not conflicts with
43
+ # an existing tag/alias (for on_alias_conflict="ignore")
44
+ remove_parens_suffix_for_categories = [
45
+ "artist",
46
+ "character",
47
+ "copyright",
48
+ "lore",
49
+ "species",
50
+ ]
51
+
52
+ # Use Underscores: Determines whether to use underscores or spaces in output tags
53
+ # Default: false (use spaces)
54
+ use_underscores = false
55
+
56
+ # Keep Implied: Whether to keep implied tags or remove them. Can also be a list of tags
57
+ # Default: false (remove implied tags)
58
+ keep_implied = false
59
+
60
+ # On Alias Conflict: How to handle conflicts when creating aliases
61
+ # Options: "silent", "overwrite", "overwrite_rarest", "warn", "raise"
62
+ # Default: "ignore" meaning do not modify the alias
63
+ on_alias_conflict = "ignore"
64
+
65
+ # Artist By Prefix: Whether to add "by_" prefix to artist tags
66
+ # Default: true
67
+ artist_by_prefix = true
68
+
69
+ # Blacklist Implied: Whether to also blacklist tags implied by blacklisted tags
70
+ # Default: true
71
+ blacklist_implied = true
72
+
73
+ # Aliases: Define tag aliases (alternative names for the same tag)
74
+ # The key is the alias, and the value is the target tag
75
+ [aliases]
76
+ explicit = "rating_explicit"
77
+ score_explicit = "rating_explicit"
78
+ score_safe = "rating_safe"
79
+ score_questionable = "rating_questionable"
80
+
81
+ # Aliases Overrides: Similar to aliases, but can override existing tag meanings
82
+ # Use this carefully as it can change the semantics of existing tags
83
+ [aliases_overrides]
84
+ safe = "rating_safe"
85
+ questionable = "rating_questionable"
86
+
87
+ # Renames: Specify tags to be renamed in the output
88
+ # This also causes them to be recognized as aliases in the input (for idempotency)
89
+ # The key is the original tag name, and the value is the new name
90
+ [renames]
91
+ domestic_cat = "cat"
92
+ domestic_dog = "dog"
normalize_tags.py CHANGED
@@ -3,152 +3,206 @@
3
  import argparse
4
  import logging
5
  import re
6
- import sys
7
  import time
8
  from collections import Counter
9
- from functools import cache
10
  from itertools import chain
11
  from pathlib import Path
12
 
13
- import e6db
 
 
 
 
 
 
 
 
 
 
 
 
14
  from e6db.utils import TagSetNormalizer, tag_categories, tag_category2id
15
 
16
- data_dir = Path(__file__).resolve().parent / "data"
 
17
 
18
 
19
- def make_tagset_normalizer(warn_conflict=True) -> TagSetNormalizer:
20
  """
21
  Create a TagSetNormalizer for encoding/decoding tags to and from integers.
22
- Pre-configures it with more aliases and customize the spelling of some tags in the output.
23
  """
24
- tagset_normalizer = TagSetNormalizer(data_dir)
25
- tagid2cat = tagset_normalizer.tag_normalizer.tag_categories
26
 
 
27
  cat_artist = tag_category2id["artist"]
28
- cat_lore = tag_category2id["lore"]
29
-
30
- @cache
31
- def tag_mapfun(tag_underscores, tid):
32
- """
33
- Maps raw e621 tags to more natural forms. The input will be from:
34
-
35
- * The list output tag strings,
36
- * Keys from the dictionary mapping strings to ids, contains canonical
37
- tag and aliases,
38
- * Implication source tags that are not used frequently enough to get an
39
- id.
40
-
41
- Returns a list, where the first string is the canonical tag used in the
42
- output, the others are additional aliases used for recognizing the tag.
43
- """
 
 
 
44
  cat = tagid2cat[tid] if tid is not None else -1
45
- tag = tag_underscores.replace("_", " ")
46
- tags = [tag, tag_underscores]
47
  if cat == cat_artist:
48
- if not tag.startswith("by "):
49
- # 'by ' is used in the output tags
50
- tag_without_suffix = tag.removesuffix(" (artist)")
51
- tags.insert(0, f"by {tag_without_suffix}")
52
- if not tag.endswith("(artist)"):
53
- artist = tag.removeprefix("by ")
54
- tags.append(f"{artist} (artist)")
55
- elif cat == cat_lore and not tag.endswith(" (lore)"):
56
- tags.append(f"{tag} (lore)")
 
 
 
 
57
 
58
  # Recognize tags where ':' were replaced by a space (aspect ratio)
59
  if ":" in tag:
60
- tags.append(tag.replace(":", " "))
61
-
62
- # Recognize tags that have escaped parentheses
63
- for t in tags.copy():
64
- escaped = t.replace("(", "\\(").replace(")", "\\)")
65
- if escaped != t:
66
- tags.append(escaped)
67
-
68
- # Example of debugging:
69
- # if "digital media" in tag:
70
- # print(tags)
71
- return tags
72
-
73
- tagset_normalizer = tagset_normalizer.map_tags(
74
- tag_mapfun,
75
- # on_conflictc choices: "silent", "overwrite", "overwrite_rarest",
76
- # warn", "raise", use "warn" to debug conflicts.
77
- on_conflict="warn" if warn_conflict else "overwrite_rarest",
78
  )
79
-
80
- # Add some underscores back in the output, for example "rating explicit"
81
- # will be exported as "rating_explicit"
82
  tag_normalizer = tagset_normalizer.tag_normalizer
83
- tag_normalizer.rename_output("rating explicit", "rating_explicit")
84
- tag_normalizer.rename_output("rating questionable", "rating_questionable")
85
- tag_normalizer.rename_output("rating safe", "rating_safe")
86
-
87
- # Custom mappings, for example "explicit" will be interpreted as
88
- # "rating_explicit"
89
- tag_normalizer.add_input_mappings("explicit", "rating_explicit")
90
- tag_normalizer.add_input_mappings("score_explicit", "rating_explicit")
91
- tag_normalizer.add_input_mappings("safe", "rating_safe", on_conflict="overwrite")
92
- tag_normalizer.add_input_mappings("score_safe", "rating_safe")
93
- tag_normalizer.add_input_mappings(
94
- "questionable", "rating_questionable", on_conflict="overwrite"
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
95
  )
96
- tag_normalizer.add_input_mappings("score_questionable", "rating_questionable")
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
97
 
98
  return tagset_normalizer
99
 
100
 
101
  def make_blacklist(
102
  tagset_normalizer: TagSetNormalizer,
103
- additional_tags=None,
104
- additional_regexps=None,
105
- override_base=False,
106
  ):
107
- if override_base:
108
- blacklist = set()
109
- re_blacklist = set()
110
- else:
111
- # Base blacklist
112
- blacklist = {
113
- "invalid tag",
114
- "by conditional dnp",
115
- "hi res",
116
- "absurd res",
117
- "superabsurd res",
118
- "4k",
119
- "uncensored",
120
- "ambiguous gender",
121
- "translation edit",
122
- "story in description",
123
- "non- balls",
124
- "non- nipples",
125
- "non- breasts",
126
- "feet out of frame",
127
- }
128
- # Base regexp
129
- re_blacklist = {r"(\d+|\d+:\d+)"}
130
-
131
- # Add additional tags and regexps
132
- if additional_tags:
133
- blacklist.update(additional_tags)
134
- if additional_regexps:
135
- re_blacklist.update(additional_regexps)
136
 
137
  all_tags = tagset_normalizer.tag_normalizer.idx2tag
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
138
 
139
- # Apply regexp blacklist
140
- for pattern in re_blacklist:
141
- re_pattern = re.compile(pattern)
142
- blacklist.update(t for t in all_tags if re_pattern.fullmatch(t))
143
-
144
- # blacklist tags ending with ' at source'
145
- blacklist.update(t for t in all_tags if t.endswith(" at source"))
146
-
147
- # Encode the blacklist to ids
148
- blacklist, implied = tagset_normalizer.encode(blacklist)
149
-
150
- # Also blacklist tags implied by blacklisted tags
151
- blacklist = set(blacklist) | implied
152
 
153
  return blacklist
154
 
@@ -158,8 +212,11 @@ RE_SEP = re.compile(r"[,\n]") # Split on commas and newlines
158
 
159
  def load_caption(fp: Path):
160
  """
161
- Load caption from file.
162
- Caption are formatted like this: tag1, tag2, caption1., caption2.
 
 
 
163
  """
164
  tags, captions = [], []
165
  with open(fp, "rt") as fd:
@@ -178,14 +235,26 @@ def process_directory(
178
  dataset_root: Path,
179
  output_dir: Path,
180
  tagset_normalizer: TagSetNormalizer,
 
181
  blacklist: set = set(),
182
- keep_implied=True,
183
  ):
 
 
 
 
 
 
 
 
184
  counter = Counter()
185
  implied_counter = Counter()
186
  processed_files = 0
187
  skipped_files = 0
188
- for file in chain(dataset_root.glob("**/*.txt"), dataset_root.glob("**/*.cap*")):
 
 
 
 
189
  if "sample-prompts" in file.name:
190
  skipped_files += 1
191
  continue
@@ -193,8 +262,20 @@ def process_directory(
193
  orig_tags = tags
194
 
195
  # Convert tags to ids, separate implied tags
 
 
 
 
 
 
 
196
  tags, implied = tagset_normalizer.encode(tags, keep_implied=keep_implied)
 
 
 
 
197
  tags = [t for t in tags if t not in blacklist]
 
198
 
199
  # Count tags
200
  counter.update(tags)
@@ -202,6 +283,10 @@ def process_directory(
202
 
203
  # Convert back to strings
204
  tags = tagset_normalizer.decode(tags)
 
 
 
 
205
  if tags == orig_tags:
206
  skipped_files += 1
207
  continue
@@ -214,10 +299,24 @@ def process_directory(
214
  fd.write(result)
215
  processed_files += 1
216
 
217
- return counter, implied_counter, processed_files, skipped_files
 
 
 
 
 
 
 
218
 
219
 
220
- def print_topk(counter, tagset_normalizer, n=10, categories=None, implied=False):
 
 
 
 
 
 
 
221
  if implied:
222
  implied = "implied "
223
  else:
@@ -228,6 +327,9 @@ def print_topk(counter, tagset_normalizer, n=10, categories=None, implied=False)
228
  else:
229
  print(f"\nTop {n} most common {implied}tags:")
230
 
 
 
 
231
  filtered_counter = counter
232
  if categories:
233
  filtered_counter = Counter()
@@ -245,15 +347,13 @@ def print_topk(counter, tagset_normalizer, n=10, categories=None, implied=False)
245
  if isinstance(tag, int):
246
  tag_string = tagset_normalizer.tag_normalizer.decode(tag)
247
  cat = tag_categories[tagset_normalizer.tag_normalizer.tag_categories[tag]]
248
- print(f" {tag_string:<30} count={count:<7} (e621:{cat})")
249
  else:
250
- print(f" {tag:<30} count={count:<7} (unknown)")
251
-
252
-
253
- def print_blacklist(blacklist, tagset_normalizer):
254
- print("\n🚫 Blacklisted tags:")
255
- for tag_str in sorted(tagset_normalizer.decode(blacklist)):
256
- print(f" {tag_str}")
257
 
258
 
259
  def setup_logger(verbose):
@@ -262,6 +362,20 @@ def setup_logger(verbose):
262
  return logging.getLogger(__name__)
263
 
264
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
265
  def main():
266
  parser = argparse.ArgumentParser(
267
  description="🏷️ Tag Normalizer - Clean and normalize your tags with ease!"
@@ -273,31 +387,23 @@ def main():
273
  "output_dir", type=Path, help="Output directory for normalized tag files"
274
  )
275
  parser.add_argument(
276
- "-v", "--verbose", action="store_true", help="Enable verbose logging"
277
- )
278
- parser.add_argument(
279
- "-i", "--keep-implied", action="store_true", help="Keep implied tags"
280
- )
281
- parser.add_argument(
282
- "-b",
283
- "--additional-blacklist",
284
- action="append",
285
- help="Additional tags to add to the blacklist",
286
  )
287
  parser.add_argument(
288
- "-r",
289
- "--additional-blacklist-regexp",
290
- action="append",
291
- help="Additional regular expressions for blacklisting tags",
292
  )
293
  parser.add_argument(
294
- "-O",
295
- "--override-base-blacklist",
296
  action="store_true",
297
- help="Override the base blacklist and regexp with only the provided additions",
298
  )
299
  parser.add_argument(
300
- "--print-blacklist",
301
  action="store_true",
302
  help="Print the effective list of blacklisted tags",
303
  )
@@ -318,70 +424,108 @@ def main():
318
  help="Print the N most common implied tags (default: 100 if flag is used without a value)",
319
  )
320
  parser.add_argument(
321
- "-c",
322
  "--stats-categories",
323
  action="append",
324
  choices=list(tag_category2id.keys()) + ["unknown"],
325
  help="Restrict tag count printing to specific categories or 'unknown'",
326
  )
327
- parser.add_argument(
328
- "--print-conflicts",
329
- action="store_true",
330
- help="Print the conflicts encountered during the construction of the normalization mapping (useful for debugging it)",
331
- )
332
  args = parser.parse_args()
333
-
334
  logger = setup_logger(args.verbose)
335
 
 
 
 
 
 
 
 
 
 
 
 
336
  logger.info("🚀 Starting Tag Normalizer")
337
- logger.info(f"Input directory: {args.input_dir}")
338
- logger.info(f"Output directory: {args.output_dir}")
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
339
 
340
  logger.info("🔧 Initializing tag normalizer...")
341
  start_time = time.time()
342
- tagset_normalizer = make_tagset_normalizer(warn_conflict=args.print_conflicts)
343
- logging.info(f" Data loaded in {time.time() - start_time:.2f} seconds")
344
 
345
  logger.info("🚫 Creating blacklist...")
346
  blacklist = make_blacklist(
347
  tagset_normalizer,
348
- additional_tags=args.additional_blacklist,
349
- additional_regexps=args.additional_blacklist_regexp,
350
- override_base=args.override_base_blacklist,
351
  )
352
  logger.info(f"Blacklist size: {len(blacklist)} tags")
353
- if args.print_blacklist:
354
- print_blacklist(blacklist, tagset_normalizer)
355
 
356
  logger.info("🔍 Processing files...")
357
  start_time = time.time()
358
- counter, implied_counter, processed_files, skipped_files = process_directory(
359
- args.input_dir,
360
- args.output_dir,
361
  tagset_normalizer,
 
362
  blacklist=blacklist,
363
- keep_implied=args.keep_implied,
364
  )
365
 
366
  logger.info(
367
  f"✅ Processing complete! Time taken: {time.time() - start_time:.2f} seconds"
368
  )
369
- logger.info(f"Files processed: {processed_files}")
370
- logger.info(f"Files skipped (no changes): {skipped_files}")
371
- logger.info(f"Total unique tags: {len(counter)}")
372
- logger.info(f"Total tag occurrences: {sum(counter.values())}")
373
- if args.print_topk:
 
 
 
 
 
 
 
 
374
  print_topk(
375
  counter,
376
  tagset_normalizer,
377
- args.print_topk,
378
- args.stats_categories,
 
379
  )
380
  if args.print_implied_topk:
381
  print_topk(
382
- implied_counter,
383
  tagset_normalizer,
384
- args.print_implied_topk,
 
385
  implied=True,
386
  )
387
 
 
3
  import argparse
4
  import logging
5
  import re
 
6
  import time
7
  from collections import Counter
 
8
  from itertools import chain
9
  from pathlib import Path
10
 
11
+ try:
12
+ from tqdm import tqdm
13
+ except ImportError:
14
+ tqdm = lambda x: x
15
+
16
+ try:
17
+ import tomllib
18
+ except ImportError:
19
+ try:
20
+ import tomli as tomllib
21
+ except ImportError:
22
+ import toml as tomllib
23
+
24
  from e6db.utils import TagSetNormalizer, tag_categories, tag_category2id
25
 
26
+ DATA_DIR = Path(__file__).resolve().parent / "data"
27
+ RE_PARENS_SUFFIX = re.compile(r"_\([^)]+\)$")
28
 
29
 
30
+ def make_tagset_normalizer(config: dict) -> TagSetNormalizer:
31
  """
32
  Create a TagSetNormalizer for encoding/decoding tags to and from integers.
33
+ Configures it based on the provided config.
34
  """
35
+ # This loads all the aliases and implications
36
+ tagset_normalizer = TagSetNormalizer(DATA_DIR)
37
 
38
+ tagid2cat = tagset_normalizer.tag_normalizer.tag_categories
39
  cat_artist = tag_category2id["artist"]
40
+ cat2suffix = {
41
+ tag_category2id["character"]: "_(character)",
42
+ tag_category2id["lore"]: "_(lore)",
43
+ tag_category2id["species"]: "_(species)",
44
+ tag_category2id["copyright"]: "_(copyright)",
45
+ }
46
+
47
+ # Create additional aliases for tags using simple rules
48
+ def input_map(tag, tid):
49
+ yield tag
50
+
51
+ # Make an alias without parentheses, it might conflict but we'll handle
52
+ # it depending on `on_alias_conflict` config value.
53
+ without_suffix = RE_PARENS_SUFFIX.sub("", tag)
54
+ had_suffix = tag != without_suffix
55
+ if had_suffix:
56
+ yield without_suffix
57
+
58
+ # Add an alias with the suffix (special case for artist)
59
  cat = tagid2cat[tid] if tid is not None else -1
 
 
60
  if cat == cat_artist:
61
+ artist = without_suffix.removeprefix("by_")
62
+ if artist != without_suffix:
63
+ yield artist
64
+ if not had_suffix:
65
+ yield f"{artist}_(artist)"
66
+ else:
67
+ yield f"by_{artist}"
68
+ if not had_suffix:
69
+ yield f"by_{artist}_(artist)"
70
+ elif not had_suffix:
71
+ suffix = cat2suffix.get(cat)
72
+ if suffix is not None:
73
+ yield f"{without_suffix}{suffix}"
74
 
75
  # Recognize tags where ':' were replaced by a space (aspect ratio)
76
  if ":" in tag:
77
+ yield tag.replace(":", " ")
78
+
79
+ on_alias_conflict = config.get("on_alias_conflict", None)
80
+ tagset_normalizer = tagset_normalizer.map_inputs(
81
+ input_map,
82
+ # on_conflict choices: "silent", "overwrite", "overwrite_rarest",
83
+ # "warn", "raise", use "warn" to debug conflicts.
84
+ on_conflict=on_alias_conflict or "ignore",
 
 
 
 
 
 
 
 
 
 
85
  )
 
 
 
86
  tag_normalizer = tagset_normalizer.tag_normalizer
87
+ tag2id = tag_normalizer.tag2idx
88
+
89
+ # Apply custom input mappings
90
+ for antecedent, consequent in config.get("aliases", {}).items():
91
+ antecedent = antecedent.replace(" ", "_")
92
+ consequent = consequent.replace(" ", "_")
93
+ tag_normalizer.add_input_mappings(
94
+ antecedent, consequent, on_conflict=on_alias_conflict or "warn"
95
+ )
96
+ for antecedent, consequent in config.get("aliases_overrides", {}).items():
97
+ antecedent = antecedent.replace(" ", "_")
98
+ consequent = consequent.replace(" ", "_")
99
+ tag_normalizer.add_input_mappings(
100
+ antecedent, consequent, on_conflict="overwrite"
101
+ )
102
+
103
+ # Apply custom output renames as opposite aliases to ensure
104
+ # idempotence:
105
+ output_renames = {
106
+ old.replace(" ", "_"): new.replace(" ", "_")
107
+ for old, new in config.get("renames", {}).items()
108
+ }
109
+ for old, new in output_renames.items():
110
+ tag_normalizer.add_input_mappings(new, old)
111
+
112
+ # Remove specified aliases
113
+ for tag in config.get("remove_aliases", []):
114
+ tag = tag.replace(" ", "_")
115
+ tag_normalizer.remove_input_mappings(tag)
116
+
117
+ # Apply rule based output renames
118
+ remove_suffix_for_cats = config.get(
119
+ "remove_parens_suffix_for_categories",
120
+ ["artist", "character", "copyright", "lore", "species"],
121
  )
122
+ remove_suffix_for_cats = {tag_category2id[c] for c in remove_suffix_for_cats}
123
+ artist_by_prefix = config.get("artist_by_prefix", True)
124
+
125
+ def map_output(tag, tid):
126
+ cat = tagid2cat[tid] if tid is not None else -1
127
+ if cat in remove_suffix_for_cats:
128
+ without_suffix = RE_PARENS_SUFFIX.sub("", tag)
129
+ if tag != without_suffix and tag2id.get(without_suffix) == tid:
130
+ tag = without_suffix
131
+ if cat == cat_artist and artist_by_prefix and not tag.startswith("by_"):
132
+ tag_wby = f"by_{tag}"
133
+ if tag2id.get(tag_wby) == tid:
134
+ tag = tag_wby
135
+ return tag
136
+
137
+ tagset_normalizer = tagset_normalizer.map_outputs(map_output)
138
+ tag2id = tagset_normalizer.tag_normalizer.tag2idx
139
+
140
+ # Apply custom output renames
141
+ for old, new in output_renames.items():
142
+ if tag2id[old] == tag2id[new]:
143
+ tag_normalizer.rename_output(old, new)
144
+ else:
145
+ logging.warning(
146
+ f"Cannot rename {old} -> {new}: old tag id={tag2id[old]} vs. new tag id={tag2id[new]})"
147
+ )
148
 
149
  return tagset_normalizer
150
 
151
 
152
  def make_blacklist(
153
  tagset_normalizer: TagSetNormalizer,
154
+ config: dict,
155
+ print_blacklist=False,
 
156
  ):
157
+ if print_blacklist:
158
+ print("\n🚫 Blacklisted tags:")
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
159
 
160
  all_tags = tagset_normalizer.tag_normalizer.idx2tag
161
+ encode = tagset_normalizer.tag_normalizer.encode
162
+ decode = tagset_normalizer.tag_normalizer.decode
163
+ get_implied = tagset_normalizer.get_implied
164
+
165
+ blacklist = set()
166
+ for tag in config.get("blacklist", ["invalid tag"]):
167
+ tag = tag.replace(" ", "_")
168
+ encoded_tag = encode(tag, tag)
169
+ blacklist.add(encoded_tag)
170
+ if print_blacklist:
171
+ decoded_tag = decode(encoded_tag)
172
+ if tag != decoded_tag:
173
+ print(f" {tag} -> {decoded_tag}")
174
+ else:
175
+ print(f" {tag}")
176
+
177
+ for regexp in config.get("blacklist_regexp", []):
178
+ regexp = regexp.replace(" ", "_")
179
+ cregexp = re.compile(regexp)
180
+ for tid, tag in enumerate(all_tags):
181
+ if cregexp.fullmatch(tag):
182
+ blacklist.add(tid)
183
+ if print_blacklist:
184
+ print(f' {tag} (r"{regexp})"')
185
+
186
+ implied = set()
187
+ if config.get("blacklist_implied", True):
188
+ for tag in blacklist:
189
+ tag_implied = get_implied(tag)
190
+ implied.update(tag_implied)
191
+ if print_blacklist:
192
+ for implied_tag in tag_implied:
193
+ print(f" {decode(implied_tag)} (implied by {decode(tag)})")
194
+ blacklist |= implied
195
 
196
+ tagid2cat = tagset_normalizer.tag_normalizer.tag_categories
197
+ blacklist_categories = {
198
+ tag_category2id[c] for c in config.get("blacklist_categories", ["pool"])
199
+ }
200
+ if blacklist_categories:
201
+ for tid, cat in enumerate(tagid2cat):
202
+ if cat in blacklist_categories:
203
+ blacklist.add(tid)
204
+ if print_blacklist:
205
+ print(f" {tagid2cat[tid]} (cat:{tag_categories[cat]})")
 
 
 
206
 
207
  return blacklist
208
 
 
212
 
213
  def load_caption(fp: Path):
214
  """
215
+ Load caption from file and split out caption sentences.
216
+
217
+ Caption are formatted like this: tag1, tag2, sentence caption1., sentence
218
+ caption2. Optional sentence captions ending with "." are split out so that
219
+ they are left untouched.
220
  """
221
  tags, captions = [], []
222
  with open(fp, "rt") as fd:
 
235
  dataset_root: Path,
236
  output_dir: Path,
237
  tagset_normalizer: TagSetNormalizer,
238
+ config: dict,
239
  blacklist: set = set(),
 
240
  ):
241
+ use_underscores = config.get("use_underscores", False)
242
+ keep_underscores = set(config.get("keep_underscores", ()))
243
+ keep_implied = config.get("keep_implied", False)
244
+ if isinstance(keep_implied, list):
245
+ encode = tagset_normalizer.tag_normalizer.encode
246
+ keep_implied = {encode(t, t) for t in keep_implied}
247
+
248
+ # Running stats
249
  counter = Counter()
250
  implied_counter = Counter()
251
  processed_files = 0
252
  skipped_files = 0
253
+ blacklist_instances = 0
254
+ implied_instances = 0
255
+
256
+ files = [*dataset_root.glob("**/*.txt"), *dataset_root.glob("**/*.cap*")]
257
+ for file in tqdm(files):
258
  if "sample-prompts" in file.name:
259
  skipped_files += 1
260
  continue
 
262
  orig_tags = tags
263
 
264
  # Convert tags to ids, separate implied tags
265
+ tags = [
266
+ t.lower().replace(" ", "_").replace(r"\(", "(").replace(r"\)", ")")
267
+ for t in tags
268
+ ]
269
+ original_len = len(tags)
270
+
271
+ # Encode to integer ids and strip implied tags
272
  tags, implied = tagset_normalizer.encode(tags, keep_implied=keep_implied)
273
+ implication_filtered_len = len(tags)
274
+ implied_instances += original_len - implication_filtered_len
275
+
276
+ # Remove blacklisted tags
277
  tags = [t for t in tags if t not in blacklist]
278
+ blacklist_instances += implication_filtered_len - len(tags)
279
 
280
  # Count tags
281
  counter.update(tags)
 
283
 
284
  # Convert back to strings
285
  tags = tagset_normalizer.decode(tags)
286
+ if not use_underscores:
287
+ tags = [
288
+ t.replace("_", " ") if t not in keep_underscores else t for t in tags
289
+ ]
290
  if tags == orig_tags:
291
  skipped_files += 1
292
  continue
 
299
  fd.write(result)
300
  processed_files += 1
301
 
302
+ return dict(
303
+ counter=counter,
304
+ implied_counter=implied_counter,
305
+ processed_files=processed_files,
306
+ skipped_files=skipped_files,
307
+ blacklist_instances=blacklist_instances,
308
+ implied_instances=implied_instances,
309
+ )
310
 
311
 
312
+ def print_topk(
313
+ counter: Counter,
314
+ tagset_normalizer: TagSetNormalizer,
315
+ config: dict,
316
+ n=10,
317
+ categories=None,
318
+ implied=False,
319
+ ):
320
  if implied:
321
  implied = "implied "
322
  else:
 
327
  else:
328
  print(f"\nTop {n} most common {implied}tags:")
329
 
330
+ use_underscores = config.get("use_underscores", True)
331
+ keep_underscores = config.get("keep_underscores", set())
332
+
333
  filtered_counter = counter
334
  if categories:
335
  filtered_counter = Counter()
 
347
  if isinstance(tag, int):
348
  tag_string = tagset_normalizer.tag_normalizer.decode(tag)
349
  cat = tag_categories[tagset_normalizer.tag_normalizer.tag_categories[tag]]
350
+ source = f"e621:{cat}"
351
  else:
352
+ tag_string = tag
353
+ source = "unknown"
354
+ if not use_underscores and tag_string not in keep_underscores:
355
+ tag_string = tag_string.replace("_", " ")
356
+ print(f" {tag_string:<30} count={count:<7} ({source})")
 
 
357
 
358
 
359
  def setup_logger(verbose):
 
362
  return logging.getLogger(__name__)
363
 
364
 
365
+ def ask_for_confirmation(prompt, default=False):
366
+ if default:
367
+ prompt = f"{prompt} (Y/n): "
368
+ else:
369
+ prompt = f"{prompt} (y/N): "
370
+
371
+ response = input(prompt).strip().lower()
372
+
373
+ if response not in "yn":
374
+ return default
375
+
376
+ return response == "y"
377
+
378
+
379
  def main():
380
  parser = argparse.ArgumentParser(
381
  description="🏷️ Tag Normalizer - Clean and normalize your tags with ease!"
 
387
  "output_dir", type=Path, help="Output directory for normalized tag files"
388
  )
389
  parser.add_argument(
390
+ "-c",
391
+ "--config",
392
+ type=Path,
393
+ help="Toml configuration file, defaults to output_dir/normalize.toml, input_dir/normalize.toml or ./normalize.toml",
394
+ default=None,
 
 
 
 
 
395
  )
396
  parser.add_argument(
397
+ "-v", "--verbose", action="store_true", help="Enable verbose logging"
 
 
 
398
  )
399
  parser.add_argument(
400
+ "-f",
401
+ "--force",
402
  action="store_true",
403
+ help="Don't ask for confirmation for clobbering input files",
404
  )
405
  parser.add_argument(
406
+ "-b", "--print-blacklist",
407
  action="store_true",
408
  help="Print the effective list of blacklisted tags",
409
  )
 
424
  help="Print the N most common implied tags (default: 100 if flag is used without a value)",
425
  )
426
  parser.add_argument(
427
+ "-s",
428
  "--stats-categories",
429
  action="append",
430
  choices=list(tag_category2id.keys()) + ["unknown"],
431
  help="Restrict tag count printing to specific categories or 'unknown'",
432
  )
 
 
 
 
 
433
  args = parser.parse_args()
 
434
  logger = setup_logger(args.verbose)
435
 
436
+ # Validate input/output directories
437
+ input_dir = args.input_dir.resolve()
438
+ output_dir = args.output_dir.resolve()
439
+ if not input_dir.is_dir():
440
+ logger.error(f"Input directory does not exist: {input_dir}")
441
+ exit(1)
442
+ try:
443
+ output_dir.mkdir(parents=True, exist_ok=True)
444
+ except OSError as e:
445
+ logger.error(f"Could not create output directory {output_dir}: {e}")
446
+ exit(1)
447
  logger.info("🚀 Starting Tag Normalizer")
448
+ logger.info(f"Input directory: {input_dir}")
449
+ logger.info(f"Output directory: {output_dir}")
450
+
451
+ if input_dir == output_dir and not args.force:
452
+ if not ask_for_confirmation(
453
+ "Input and output directories are the same. This will clobber the input directory. Are you sure you want to continue?",
454
+ default=False,
455
+ ):
456
+ exit(0)
457
+
458
+ # Load config file
459
+ for config_path in [
460
+ args.config,
461
+ output_dir / "normalize.toml",
462
+ input_dir / "normalize.toml",
463
+ Path(".") / "normalize.toml",
464
+ ]:
465
+ if config_path is None:
466
+ continue
467
+ if config_path.exists():
468
+ config_path = config_path.resolve()
469
+ break
470
+ else:
471
+ logger.error(f"Could not find a config file in {input_dir}, {output_dir} or ./")
472
+ exit(1)
473
+ logger.info(f"🔧 Using config file: {config_path}")
474
+ with open(config_path, "rb") as f:
475
+ config = tomllib.load(f)
476
 
477
  logger.info("🔧 Initializing tag normalizer...")
478
  start_time = time.time()
479
+ tagset_normalizer = make_tagset_normalizer(config)
480
+ logging.info(f"Data loaded in {time.time() - start_time:.2f} seconds")
481
 
482
  logger.info("🚫 Creating blacklist...")
483
  blacklist = make_blacklist(
484
  tagset_normalizer,
485
+ config,
486
+ print_blacklist=args.print_blacklist,
 
487
  )
488
  logger.info(f"Blacklist size: {len(blacklist)} tags")
 
 
489
 
490
  logger.info("🔍 Processing files...")
491
  start_time = time.time()
492
+ stats = process_directory(
493
+ input_dir,
494
+ output_dir,
495
  tagset_normalizer,
496
+ config,
497
  blacklist=blacklist,
 
498
  )
499
 
500
  logger.info(
501
  f"✅ Processing complete! Time taken: {time.time() - start_time:.2f} seconds"
502
  )
503
+ logger.info(f"Files modified: {stats['processed_files']}")
504
+ logger.info(f"Files skipped (no changes): {stats['skipped_files']}")
505
+ counter = stats["counter"]
506
+ logger.info(f"Unique tags: {len(counter)}")
507
+ logger.info(f"Tag occurrences: {sum(counter.values())}")
508
+ unknown_counter = [count for t, count in counter.items() if not isinstance(t, int)]
509
+ logger.info(f"Unknown tags: {len(unknown_counter)}")
510
+ logger.info(f"Unknown tags occurrences: {sum(unknown_counter)}")
511
+ logger.info(f"Removed by blacklist: {stats['blacklist_instances']}")
512
+ logger.info(f"Removed by implication: {stats['implied_instances']}")
513
+ if args.print_topk or args.stats_categories:
514
+ if not args.print_topk:
515
+ args.print_topk = 100
516
  print_topk(
517
  counter,
518
  tagset_normalizer,
519
+ config,
520
+ n=args.print_topk,
521
+ categories=args.stats_categories,
522
  )
523
  if args.print_implied_topk:
524
  print_topk(
525
+ stats["implied_counter"],
526
  tagset_normalizer,
527
+ config,
528
+ n=args.print_implied_topk,
529
  implied=True,
530
  )
531
 
query_tags.py CHANGED
@@ -61,9 +61,26 @@ def dothething(args):
61
 
62
  # Deduplicate, global top-k
63
  neigh_idxs = np.unique(neigh_idxs)
64
- scores = scores[neigh_idxs, :].sum(axis=1)
 
65
  if len(neigh_idxs) > global_topk:
66
- neigh_idxs = neigh_idxs[np.argpartition(-scores, global_topk)[:global_topk]]
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
67
 
68
  idxs = np.concatenate([sel_idxs, neigh_idxs])
69
  query_slice = slice(None, len(sel_idxs))
 
61
 
62
  # Deduplicate, global top-k
63
  neigh_idxs = np.unique(neigh_idxs)
64
+ scores = scores[neigh_idxs, :].mean(axis=1)
65
+ rej = None
66
  if len(neigh_idxs) > global_topk:
67
+ partition = np.argpartition(-scores, global_topk)
68
+ rej = neigh_idxs[partition[global_topk:]]
69
+ rej_scores = scores[partition[global_topk:]]
70
+ scores = scores[partition[:global_topk]]
71
+ neigh_idxs = neigh_idxs[partition[:global_topk]]
72
+
73
+ tag_list = " ".join(
74
+ f"{idx2tag[i]} ({format_tagfreq(tag_rank_to_freq(i))})"
75
+ for s, i in zip(scores, neigh_idxs)
76
+ )
77
+ print("accepted:", tag_list)
78
+ if rej is not None:
79
+ tag_list = " ".join(
80
+ f"{idx2tag[i]} ({format_tagfreq(tag_rank_to_freq(i))}, {s})"
81
+ for s, i in zip(rej_scores, rej)
82
+ )
83
+ print("rejected:", tag_list)
84
 
85
  idxs = np.concatenate([sel_idxs, neigh_idxs])
86
  query_slice = slice(None, len(sel_idxs))