Datasets:
Tasks:
Token Classification
Languages:
English
Size:
10K<n<100K
Tags:
Not-For-All-Audiences
License:
query_tags: cache global pca
Browse files- query_tags.py +37 -9
query_tags.py
CHANGED
@@ -3,8 +3,7 @@ from pathlib import Path
|
|
3 |
import argparse
|
4 |
|
5 |
import numpy as np
|
6 |
-
import safetensors
|
7 |
-
from sklearn.decomposition import PCA
|
8 |
|
9 |
from e6db.utils.numpy import load_tags
|
10 |
from e6db.utils import (
|
@@ -16,10 +15,7 @@ from e6db.utils import (
|
|
16 |
|
17 |
|
18 |
def dothething(args):
|
19 |
-
|
20 |
-
args.data_dir / "implicit_tag_factors.safetensors", framework="numpy"
|
21 |
-
) as st:
|
22 |
-
X = st.get_tensor("tag_factors")
|
23 |
N_vocab = X.shape[0]
|
24 |
|
25 |
tags2id, idx2tag, tag_categories = load_tags(args.data_dir)
|
@@ -41,7 +37,7 @@ def dothething(args):
|
|
41 |
rank_tresh = min(N_vocab, int(tag_freq_to_rank(args.min_frequency)))
|
42 |
|
43 |
# Score and filter
|
44 |
-
scores =
|
45 |
scores[sel_idxs[sel_idxs < rank_tresh], :] = float("-inf") # Mask self-matches
|
46 |
if args.category:
|
47 |
categories = [tag_category2id[cat] for cat in args.category]
|
@@ -61,6 +57,7 @@ def dothething(args):
|
|
61 |
if not args.plot_out:
|
62 |
return
|
63 |
from matplotlib import pyplot as plt
|
|
|
64 |
|
65 |
# Deduplicate, global top-k
|
66 |
neigh_idxs = np.unique(neigh_idxs)
|
@@ -74,8 +71,8 @@ def dothething(args):
|
|
74 |
colors = np.array(tag_categories_colors)[tag_categories[idxs]]
|
75 |
|
76 |
# Local PCA
|
77 |
-
X2 =
|
78 |
-
del
|
79 |
X2 = X2 - X2.mean(0)
|
80 |
X2 /= np.linalg.norm(X2, axis=1)[:, None]
|
81 |
X2t = PCA(2).fit_transform(X2)[:, ::-1]
|
@@ -115,6 +112,37 @@ def dothething(args):
|
|
115 |
f.savefig(args.plot_out, facecolor="auto")
|
116 |
|
117 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
118 |
def parse_args():
|
119 |
parser = argparse.ArgumentParser(
|
120 |
description="Query similar tags and plots a local PCA.\nUse `-o -` to get an interactive plot",
|
|
|
3 |
import argparse
|
4 |
|
5 |
import numpy as np
|
6 |
+
import safetensors.numpy
|
|
|
7 |
|
8 |
from e6db.utils.numpy import load_tags
|
9 |
from e6db.utils import (
|
|
|
15 |
|
16 |
|
17 |
def dothething(args):
|
18 |
+
X = load_smoothed(args.data_dir, args.first_pca)
|
|
|
|
|
|
|
19 |
N_vocab = X.shape[0]
|
20 |
|
21 |
tags2id, idx2tag, tag_categories = load_tags(args.data_dir)
|
|
|
37 |
rank_tresh = min(N_vocab, int(tag_freq_to_rank(args.min_frequency)))
|
38 |
|
39 |
# Score and filter
|
40 |
+
scores = X[:rank_tresh] @ X[sel_idxs].T
|
41 |
scores[sel_idxs[sel_idxs < rank_tresh], :] = float("-inf") # Mask self-matches
|
42 |
if args.category:
|
43 |
categories = [tag_category2id[cat] for cat in args.category]
|
|
|
57 |
if not args.plot_out:
|
58 |
return
|
59 |
from matplotlib import pyplot as plt
|
60 |
+
from sklearn.decomposition import PCA
|
61 |
|
62 |
# Deduplicate, global top-k
|
63 |
neigh_idxs = np.unique(neigh_idxs)
|
|
|
71 |
colors = np.array(tag_categories_colors)[tag_categories[idxs]]
|
72 |
|
73 |
# Local PCA
|
74 |
+
X2 = X[idxs]
|
75 |
+
del X
|
76 |
X2 = X2 - X2.mean(0)
|
77 |
X2 /= np.linalg.norm(X2, axis=1)[:, None]
|
78 |
X2t = PCA(2).fit_transform(X2)[:, ::-1]
|
|
|
112 |
f.savefig(args.plot_out, facecolor="auto")
|
113 |
|
114 |
|
115 |
+
def load_smoothed(data_dir: Path | str, k: None | int = None):
|
116 |
+
"""
|
117 |
+
Loads the tag embeddings, scale them to unit length and optionally smooth
|
118 |
+
them by reducing dimensionality using PCA.
|
119 |
+
"""
|
120 |
+
# Try loading from cache
|
121 |
+
data_dir = Path(data_dir)
|
122 |
+
pca_cache_path = data_dir / f"implicit_tag_factors_pca{k}.safetensors"
|
123 |
+
if k and pca_cache_path.exists():
|
124 |
+
with safetensors.safe_open(pca_cache_path, framework="numpy") as st:
|
125 |
+
return st.get_tensor(f"tag_factors_pca{k}")
|
126 |
+
|
127 |
+
# Load raw embeddings
|
128 |
+
with safetensors.safe_open(
|
129 |
+
data_dir / "implicit_tag_factors.safetensors", framework="numpy"
|
130 |
+
) as st:
|
131 |
+
X = st.get_tensor("tag_factors")
|
132 |
+
X /= np.linalg.norm(X, axis=1)[:, None]
|
133 |
+
|
134 |
+
if not k or k >= X.shape[1]:
|
135 |
+
return X
|
136 |
+
|
137 |
+
from sklearn.decomposition import PCA
|
138 |
+
|
139 |
+
pca = PCA(k)
|
140 |
+
X = pca.fit_transform(X)
|
141 |
+
X /= np.linalg.norm(X, axis=1)[:, None]
|
142 |
+
safetensors.numpy.save_file({f"tag_factors_pca{k}": X}, pca_cache_path)
|
143 |
+
return X
|
144 |
+
|
145 |
+
|
146 |
def parse_args():
|
147 |
parser = argparse.ArgumentParser(
|
148 |
description="Query similar tags and plots a local PCA.\nUse `-o -` to get an interactive plot",
|