Datasets:
# coding=utf-8 | |
# Copyright 2020 The HuggingFace Datasets Authors and the current dataset script contributor. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
"""TODO: Add a description here.""" | |
import csv | |
import json | |
import os | |
import datasets | |
# TODO: Add BibTeX citation | |
# Find for instance the citation on arxiv or on the dataset repo/website | |
_CITATION = """\ | |
@inproceedings{perez2019generating, | |
title={Generating Summaries with Topic Templates and Structured Convolutional Decoders}, | |
author={Perez-Beltrachini, Laura and Liu, Yang and Lapata, Mirella}, | |
booktitle={Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics}, | |
pages={5107--5116}, | |
year={2019} | |
} | |
""" | |
# TODO: Add description of the dataset here | |
# You can copy an official description | |
_DESCRIPTION = """\ | |
Summarise the most important facts of a given entity in the Film, Company, and Animal domains from a cluster of related documents. | |
""" | |
# TODO: Add a link to an official homepage for the dataset here | |
_HOMEPAGE = "https://datashare.ed.ac.uk/handle/10283/3368" | |
# TODO: Add the licence for the dataset here if you can find it | |
_LICENSE = "CC BY-SA 3.0" | |
# TODO: Add link to the official dataset URLs here | |
# The HuggingFace dataset library don't host the datasets but only point to the original files | |
# This can be an arbitrary nested dict/list of URLs (see below in `_split_generators` method) | |
_URLs = { | |
# 'animals': "https://datashare.ed.ac.uk/bitstream/handle/10283/3368/animal_tok_min5_L7.5k.zip", | |
"animals": "https://huggingface.co./datasets/GEM/wiki_cat_sum/animal.zip" | |
'company': "https://huggingface.co./datasets/GEM/wiki_cat_sum/company.zip", | |
'film' : "https://huggingface.co./datasets/GEM/wiki_cat_sum/film.zip", | |
} | |
# TODO: Name of the dataset usually match the script name with CamelCase instead of snake_case | |
class WikiCatSum(datasets.GeneratorBasedBuilder): | |
"""TODO: Short description of my dataset.""" | |
VERSION = datasets.Version("0.1.0") | |
# If you need to make complex sub-parts in the datasets with configurable options | |
# You can create your own builder configuration class to store attribute, inheriting from datasets.BuilderConfig | |
# BUILDER_CONFIG_CLASS = MyBuilderConfig | |
# You will be able to load one or the other configurations in the following list with | |
# data = datasets.load_dataset('my_dataset', 'first_domain') | |
# data = datasets.load_dataset('my_dataset', 'second_domain') | |
BUILDER_CONFIGS = [ | |
datasets.BuilderConfig(name="animal" , version=VERSION, description="Animal domain"), | |
datasets.BuilderConfig(name="company", version=VERSION, description="Company domain"), | |
datasets.BuilderConfig(name="film" , version=VERSION, description="Film domain"), | |
] | |
DEFAULT_CONFIG_NAME = "animal" # It's not mandatory to have a default configuration. Just use one if it make sense. | |
def _info(self): | |
# TODO: This method specifies the datasets.DatasetInfo object which contains informations and typings for the dataset | |
features = datasets.Features( | |
{ | |
"id": datasets.Value("string"), | |
"title": datasets.Value("string"), | |
"paragraphs": datasets.features.Sequence( | |
datasets.Value("string")), | |
"summary": datasets.features.Sequence( | |
{ | |
"text": datasets.Value("string"), | |
"topic": datasets.Value("int"), | |
}) | |
# These are the features of your dataset like images, labels ... | |
} | |
) | |
return datasets.DatasetInfo( | |
# This is the description that will appear on the datasets page. | |
description=_DESCRIPTION, | |
# This defines the different columns of the dataset and their types | |
features=features, # Here we define them above because they are different between the two configurations | |
# If there's a common (input, target) tuple from the features, | |
# specify them here. They'll be used if as_supervised=True in | |
# builder.as_dataset. | |
supervised_keys=None, | |
# Homepage of the dataset for documentation | |
homepage=_HOMEPAGE, | |
# License for the dataset if available | |
license=_LICENSE, | |
# Citation for the dataset | |
citation=_CITATION, | |
) | |
def _split_generators(self, dl_manager): | |
"""Returns SplitGenerators.""" | |
# TODO: This method is tasked with downloading/extracting the data and defining the splits depending on the configuration | |
# If several configurations are possible (listed in BUILDER_CONFIGS), the configuration selected by the user is in self.config.name | |
# dl_manager is a datasets.download.DownloadManager that can be used to download and extract URLs | |
# It can accept any type or nested list/dict and will give back the same structure with the url replaced with path to local files. | |
# By default the archives will be extracted and a path to a cached folder where they are extracted is returned instead of the archive | |
my_urls = _URLs[self.config.name] | |
data_dir = dl_manager.download_and_extract(my_urls) | |
challenge_sets = [ | |
("challenge_%s_nov_%s" % (split,lvl),"%s-%s_nv2_%s.jsonl" % (split,self.config.name,lvl)) \ | |
for split in ["train","valid","test"] for lvl in ["low","mid","high"] | |
] | |
# + ... | |
return [ | |
datasets.SplitGenerator( | |
name=datasets.Split.TRAIN, | |
# These kwargs will be passed to _generate_examples | |
gen_kwargs={ | |
"filepath": os.path.join(data_dir, "train-%s.jsonl" % (self.config.name)), | |
"split": "train", | |
}, | |
), | |
datasets.SplitGenerator( | |
name=datasets.Split.TEST, | |
# These kwargs will be passed to _generate_examples | |
gen_kwargs={ | |
"filepath": os.path.join(data_dir, "test-%s.jsonl" % (self.config.name)), | |
"split": "test" | |
}, | |
), | |
datasets.SplitGenerator( | |
name=datasets.Split.VALIDATION, | |
# These kwargs will be passed to _generate_examples | |
gen_kwargs={ | |
"filepath": os.path.join(data_dir, "valid-%s.jsonl" % (self.config.name)), | |
"split": "dev", | |
}, | |
), | |
] + [ | |
datasets.SplitGenerator( | |
name=challenge_split, | |
gen_kwargs={ | |
"filepath": os.path.join(data_dir, filename), | |
"split": challenge_split, | |
}, | |
) | |
for challenge_split, filename in challenge_sets | |
] | |
def _generate_examples( | |
self, filepath, split # method parameters are unpacked from `gen_kwargs` as given in `_split_generators` | |
): | |
""" Yields examples as (key, example) tuples. """ | |
# This method handles input defined in _split_generators to yield (key, example) tuples from the dataset. | |
# The `key` is here for legacy reason (tfds) and is not important in itself. | |
with open(filepath, encoding="utf-8") as f: | |
for row in f: | |
data = json.loads(row) | |
data["gem_id"] = "GEM-wiki_cat_sum-%s-%d" % (split,data["id"]+1) | |
yield data["id"],data | |