Datasets:
GEM
/

Modalities:
Text
Languages:
English
ArXiv:
Libraries:
Datasets
License:
File size: 18,223 Bytes
13e61da
 
 
 
 
76820b3
740b92e
76820b3
13e61da
 
 
 
 
 
 
 
 
e732d17
 
13e61da
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0100072
13e61da
 
 
 
 
 
 
 
 
0100072
13e61da
 
0100072
13e61da
 
 
 
 
 
 
 
 
 
 
 
0100072
13e61da
 
 
 
 
0100072
13e61da
 
 
 
 
0100072
13e61da
 
 
 
 
0100072
13e61da
 
 
 
 
 
 
 
 
 
 
 
 
0100072
13e61da
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0100072
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
13e61da
 
 
 
 
 
 
 
 
 
 
0100072
13e61da
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0100072
 
 
13e61da
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
---
annotations_creators:
- automatically-created
language_creators:
- unknown
language:
- en
license:
- cc-by-sa-3.0
multilinguality:
- unknown
size_categories:
- unknown
source_datasets:
- original
task_categories:
- summarization
task_ids: []
pretty_name: wiki_cat_sum
---

# Dataset Card for GEM/wiki_cat_sum

## Dataset Description

- **Homepage:** https://github.com/lauhaide/WikiCatSum
- **Repository:** https://datashare.ed.ac.uk/handle/10283/3368
- **Paper:** https://arxiv.org/abs/1906.04687
- **Leaderboard:** N/A
- **Point of Contact:** Laura Perez-Beltrachini

### Link to Main Data Card

You can find the main data card on the [GEM Website](https://gem-benchmark.com/data_cards/wiki_cat_sum).

### Dataset Summary 

WikiCatSum is an English summarization dataset in three domains: animals, companies, and film. It provides multiple paragraphs of text paired with a summary of the paragraphs.

You can load the dataset via:
```
import datasets
data = datasets.load_dataset('GEM/wiki_cat_sum')
```
The data loader can be found [here](https://huggingface.co./datasets/GEM/wiki_cat_sum).

#### website
[Github](https://github.com/lauhaide/WikiCatSum)

#### paper
[Arxiv](https://arxiv.org/abs/1906.04687)

#### authors
Laura Perez-Beltrachini, Yang Liu, Mirella Lapata (University of Edinburgh) Peter J. Liu, Mohammad Saleh, Etienne Pot, Ben Goodrich, Ryan Sepassi, Lukasz Kaiser, Noam Shazeer (GoogleBrain)

## Dataset Overview

### Where to find the Data and its Documentation

#### Webpage

<!-- info: What is the webpage for the dataset (if it exists)? -->
<!-- scope: telescope -->
[Github](https://github.com/lauhaide/WikiCatSum)

#### Download

<!-- info: What is the link to where the original dataset is hosted? -->
<!-- scope: telescope -->
[Website](https://datashare.ed.ac.uk/handle/10283/3368)

#### Paper

<!-- info: What is the link to the paper describing the dataset (open access preferred)? -->
<!-- scope: telescope -->
[Arxiv](https://arxiv.org/abs/1906.04687)

#### BibTex

<!-- info: Provide the BibTex-formatted reference for the dataset. Please use the correct published version (ACL anthology, etc.) instead of google scholar created Bibtex. -->
<!-- scope: microscope -->
```
@inproceedings{perez-beltrachini-etal-2019-generating,
    title = "Generating Summaries with Topic Templates and Structured Convolutional Decoders",
    author = "Perez-Beltrachini, Laura  and
      Liu, Yang  and
      Lapata, Mirella",
    booktitle = "Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics",
    month = jul,
    year = "2019",
    address = "Florence, Italy",
    publisher = "Association for Computational Linguistics",
    url = "https://aclanthology.org/P19-1504",
    doi = "10.18653/v1/P19-1504",
}
```

#### Contact Name

<!-- quick -->
<!-- info: If known, provide the name of at least one person the reader can contact for questions about the dataset. -->
<!-- scope: periscope -->
Laura Perez-Beltrachini

#### Contact Email

<!-- info: If known, provide the email of at least one person the reader can contact for questions about the dataset. -->
<!-- scope: periscope -->
[email protected]

#### Has a Leaderboard?

<!-- info: Does the dataset have an active leaderboard? -->
<!-- scope: telescope -->
no


### Languages and Intended Use

#### Multilingual?

<!-- quick -->
<!-- info: Is the dataset multilingual? -->
<!-- scope: telescope -->
no

#### Covered Languages

<!-- quick -->
<!-- info: What languages/dialects are covered in the dataset? -->
<!-- scope: telescope -->
`English`

#### License

<!-- quick -->
<!-- info: What is the license of the dataset? -->
<!-- scope: telescope -->
cc-by-sa-3.0: Creative Commons Attribution Share Alike 3.0 Unported

#### Intended Use

<!-- info: What is the intended use of the dataset? -->
<!-- scope: microscope -->
Research on multi-document abstractive summarisation.

#### Primary Task

<!-- info: What primary task does the dataset support? -->
<!-- scope: telescope -->
Summarization

#### Communicative Goal

<!-- quick -->
<!-- info: Provide a short description of the communicative goal of a model trained for this task on this dataset. -->
<!-- scope: periscope -->
Summarise the most important facts of a given entity in the Film, Company, and Animal domains from a cluster of related documents. 


### Credit

#### Curation Organization Type(s)

<!-- info: In what kind of organization did the dataset curation happen? -->
<!-- scope: telescope -->
`industry`, `academic`

#### Curation Organization(s)

<!-- info: Name the organization(s). -->
<!-- scope: periscope -->
Google Cloud Platform, University of Edinburgh

#### Dataset Creators

<!-- info: Who created the original dataset? List the people involved in collecting the dataset and their affiliation(s). -->
<!-- scope: microscope -->
Laura Perez-Beltrachini, Yang Liu, Mirella Lapata (University of Edinburgh) Peter J. Liu, Mohammad Saleh, Etienne Pot, Ben Goodrich, Ryan Sepassi, Lukasz Kaiser, Noam Shazeer (GoogleBrain)

#### Funding

<!-- info: Who funded the data creation? -->
<!-- scope: microscope -->
Google Cloud Platform, European Research Council

#### Who added the Dataset to GEM?

<!-- info: Who contributed to the data card and adding the dataset to GEM? List the people+affiliations involved in creating this data card and who helped integrate this dataset into GEM. -->
<!-- scope: microscope -->
Ronald Cardenas (University of Edinburgh) Laura Perez-Beltrachini (University of Edinburgh) 


### Dataset Structure

#### Data Fields

<!-- info: List and describe the fields present in the dataset. -->
<!-- scope: telescope -->
- `id`: ID of the data example 
- `title`: Is the Wikipedia article's title
- `paragraphs`: Is the ranked list of paragraphs from the set of crawled texts
- `summary`: Is constituted by a list of sentences together with their corresponding topic label

#### Example Instance

<!-- info: Provide a JSON formatted example of a typical instance in the dataset. -->
<!-- scope: periscope -->
This is a truncated example from the animal setting: 

```
{'gem_id': 'animal-train-1',
 'gem_parent_id': 'animal-train-1',
 'id': '2652',
 'paragraphs': ["lytrosis (hulst) of louisiana vernon antoine brou jr. 2005. southern lepidopterists' news, 27: 7 ., ..."],
 'references': ['lytrosis unitaria , the common lytrosis moth, is a species of moth of the geometridae family. it is found in north america, including arkansas, georgia, iowa , massachusetts, and wisconsin. the wingspan is about 50 mm. the larvae feed on rosa, crataegus, amelanchier, acer, quercus and viburnum species.'],
 'summary': {'text': ['lytrosis unitaria , the common lytrosis moth , is a species of moth of the geometridae family .',
   'it is found in north america , including arkansas , georgia , iowa , massachusetts , new hampshire , new jersey , new york , north carolina , ohio , oklahoma , ontario , pennsylvania , south carolina , tennessee , texas , virginia , west virginia and wisconsin .',
   'the wingspan is about 50 mm .',
   'the larvae feed on rosa , crataegus , amelanchier , acer , quercus and viburnum species . '],
  'topic': [29, 20, 9, 8]},
 'target': 'lytrosis unitaria , the common lytrosis moth, is a species of moth of the geometridae family. it is found in north america, including arkansas, georgia, iowa , massachusetts, and wisconsin. the wingspan is about 50 mm. the larvae feed on rosa, crataegus, amelanchier, acer, quercus and viburnum species.',
 'title': 'lytrosis unitaria'}
```

#### Data Splits

<!-- info: Describe and name the splits in the dataset if there are more than one. -->
<!-- scope: periscope -->
Nb of instances in train/valid/test are 50,938/2,855/2,831

#### Splitting Criteria

<!-- info: Describe any criteria for splitting the data, if used. If there are differences between the splits (e.g., if the training annotations are machine-generated and the dev and test ones are created by humans, or if different numbers of annotators contributed to each example), describe them here. -->
<!-- scope: microscope -->
The data was split i.i.d., i.e. uniformly split into training, validation, and test datasets.



## Dataset in GEM

### Rationale for Inclusion in GEM

#### Why is the Dataset in GEM?

<!-- info: What does this dataset contribute toward better generation evaluation and why is it part of GEM? -->
<!-- scope: microscope -->
Evaluation of models' performance on noisy (document, summary) pairs and long inputs.
Evaluate models' capabilities to generalise and mitigate biases.  

#### Similar Datasets

<!-- info: Do other datasets for the high level task exist? -->
<!-- scope: telescope -->
no

#### Unique Language Coverage

<!-- info: Does this dataset cover other languages than other datasets for the same task? -->
<!-- scope: periscope -->
no

#### Ability that the Dataset measures

<!-- info: What aspect of model ability can be measured with this dataset? -->
<!-- scope: periscope -->
Capabilities to generalise, mitigate biases, factual correctness.  


### GEM-Specific Curation

#### Modificatied for GEM?

<!-- info: Has the GEM version of the dataset been modified in any way (data, processing, splits) from the original curated data? -->
<!-- scope: telescope -->
yes

#### GEM Modifications

<!-- info: What changes have been made to he original dataset? -->
<!-- scope: periscope -->
`annotations added`

#### Modification Details

<!-- info: For each of these changes, described them in more details and provided the intended purpose of the modification -->
<!-- scope: microscope -->
We provide topic labels for summary sentences.

#### Additional Splits?

<!-- info: Does GEM provide additional splits to the dataset? -->
<!-- scope: telescope -->
no


### Getting Started with the Task

#### Pointers to Resources

<!-- info: Getting started with in-depth research on the task. Add relevant pointers to resources that researchers can consult when they want to get started digging deeper into the task. -->
<!-- scope: microscope -->
- [Generating Wikipedia by Summarizing Long Sequences](https://arxiv.org/abs/1801.10198)
- [Generating Summaries with Topic Templates and Structured Convolutional Decoders](https://arxiv.org/abs/1906.04687)
- [Noisy Self-Knowledge Distillation for Text Summarization](https://arxiv.org/abs/2009.07032)

And all references in these papers.



## Previous Results

### Previous Results

#### Measured Model Abilities

<!-- info: What aspect of model ability can be measured with this dataset? -->
<!-- scope: telescope -->
Capabilities to generalise, mitigate biases, factual correctness.

#### Metrics

<!-- info: What metrics are typically used for this task? -->
<!-- scope: periscope -->
`ROUGE`, `BERT-Score`, `MoverScore`, `Other: Other Metrics`

#### Other Metrics

<!-- info: Definitions of other metrics -->
<!-- scope: periscope -->
- Abstract/Copy
- Factual accuracy based on the score of (Goodrich et al., 2019) and the relation extraction system of (Sorokin and Gurevych, 2017).

#### Proposed Evaluation

<!-- info: List and describe the purpose of the metrics and evaluation methodology (including human evaluation) that the dataset creators used when introducing this task. -->
<!-- scope: microscope -->
Human based are Question Answering and Ranking (Content, Fluency and  Repetition)

#### Previous results available?

<!-- info: Are previous results available? -->
<!-- scope: telescope -->
yes

#### Other Evaluation Approaches

<!-- info: What evaluation approaches have others used? -->
<!-- scope: periscope -->
Those listed above.

#### Relevant Previous Results

<!-- info: What are the most relevant previous results for this task/dataset? -->
<!-- scope: microscope -->
Generating Summaries with Topic Templates and Structured Convolutional Decoders
https://arxiv.org/abs/1906.04687

Noisy Self-Knowledge Distillation for Text Summarization
https://arxiv.org/abs/2009.07032




## Dataset Curation

### Original Curation

#### Original Curation Rationale

<!-- info: Original curation rationale -->
<!-- scope: telescope -->
The dataset is a subset of the WikiSum (Liu et al., 2018) dataset focusing on summaries of entities in three domains (Film, Company, and Animal). It is multi-document summarisation where input-output pairs for each example entity are created as follows. The input is a set of paragraphs collected from i) documents in the Reference section of the entity's Wikipedia page plus ii) documents collected from the top ten search results after querying Google search engine with the entity name. The output summary is the Wikipedia abstract for the entity.

#### Communicative Goal

<!-- info: What was the communicative goal? -->
<!-- scope: periscope -->
Generate descriptive summaries with specific domains, where certain topics are discussed and generally in specific orders.

#### Sourced from Different Sources

<!-- info: Is the dataset aggregated from different data sources? -->
<!-- scope: telescope -->
yes

#### Source Details

<!-- info: List the sources (one per line) -->
<!-- scope: periscope -->
WikiSum (Liu et al., 2018)


### Language Data

#### How was Language Data Obtained?

<!-- info: How was the language data obtained? -->
<!-- scope: telescope -->
`Other`

#### Topics Covered

<!-- info: Does the language in the dataset focus on specific topics? How would you describe them? -->
<!-- scope: periscope -->
The dataset and task focuses on summaries for entities in three domains:  Company, Film, and Animal.

#### Data Validation

<!-- info: Was the text validated by a different worker or a data curator? -->
<!-- scope: telescope -->
not validated

#### Data Preprocessing

<!-- info: How was the text data pre-processed? (Enter N/A if the text was not pre-processed) -->
<!-- scope: microscope -->
Summary sentences are associated with a topic label. There is a topic model for each domain. 

#### Was Data Filtered?

<!-- info: Were text instances selected or filtered? -->
<!-- scope: telescope -->
not filtered


### Structured Annotations

#### Additional Annotations?

<!-- quick -->
<!-- info: Does the dataset have additional annotations for each instance? -->
<!-- scope: telescope -->
automatically created

#### Annotation Service?

<!-- info: Was an annotation service used? -->
<!-- scope: telescope -->
no

#### Annotation Values

<!-- info: Purpose and values for each annotation -->
<!-- scope: microscope -->
Each summary sentences was annotated with a topic label. There is a topic model for each of the three domains. This was used to guide a hierarchical decoder. 

#### Any Quality Control?

<!-- info: Quality control measures? -->
<!-- scope: telescope -->
validated by data curators

#### Quality Control Details

<!-- info: Describe the quality control measures that were taken. -->
<!-- scope: microscope -->
Manual inspection of a sample of topics assigned to sentences. The number of topics was selected based on the  performance of the summarisation model.


### Consent

#### Any Consent Policy?

<!-- info: Was there a consent policy involved when gathering the data? -->
<!-- scope: telescope -->
no

#### Justification for Using the Data

<!-- info: If not, what is the justification for reusing the data? -->
<!-- scope: microscope -->
The dataset is base on Wikipedia and referenced and retrieved documents crawled from the Web.


### Private Identifying Information (PII)

#### Contains PII?

<!-- quick -->
<!-- info: Does the source language data likely contain Personal Identifying Information about the data creators or subjects? -->
<!-- scope: telescope -->
unlikely

#### Any PII Identification?

<!-- info: Did the curators use any automatic/manual method to identify PII in the dataset? -->
<!-- scope: periscope -->
no identification


### Maintenance

#### Any Maintenance Plan?

<!-- info: Does the original dataset have a maintenance plan? -->
<!-- scope: telescope -->
no



## Broader Social Context

### Previous Work on the Social Impact of the Dataset

#### Usage of Models based on the Data

<!-- info: Are you aware of cases where models trained on the task featured in this dataset ore related tasks have been used in automated systems? -->
<!-- scope: telescope -->
no


### Impact on Under-Served Communities

#### Addresses needs of underserved Communities?

<!-- info: Does this dataset address the needs of communities that are traditionally underserved in language technology, and particularly language generation technology? Communities may be underserved for exemple because their language, language variety, or social or geographical context is underepresented in NLP and NLG resources (datasets and models). -->
<!-- scope: telescope -->
no


### Discussion of Biases

#### Any Documented Social Biases?

<!-- info: Are there documented social biases in the dataset? Biases in this context are variations in the ways members of different social categories are represented that can have harmful downstream consequences for members of the more disadvantaged group. -->
<!-- scope: telescope -->
yes

#### Links and Summaries of Analysis Work

<!-- info: Provide links to and summaries of works analyzing these biases. -->
<!-- scope: microscope -->
This dataset is based on Wikipedia and thus biases analysis on other Wikipedia-based datasets are potentially true for  WikiCatSum.  For instance, see analysis for the ToTTo dataset here [1].

[1] Automatic Construction of Evaluation Suites for Natural Language Generation Datasets
https://openreview.net/forum?id=CSi1eu_2q96





## Considerations for Using the Data

### PII Risks and Liability



### Licenses

#### Copyright Restrictions on the Dataset

<!-- info: Based on your answers in the Intended Use part of the Data Overview Section, which of the following best describe the copyright and licensing status of the dataset? -->
<!-- scope: periscope -->
`public domain`

#### Copyright Restrictions on the Language Data

<!-- info: Based on your answers in the Language part of the Data Curation Section, which of the following best describe the copyright and licensing status of the underlying language data? -->
<!-- scope: periscope -->
`public domain`


### Known Technical Limitations