import csv import json import os import datasets _CITATION = """\ @inproceedings{juraska-etal-2019-viggo, title = "{V}i{GGO}: A Video Game Corpus for Data-To-Text Generation in Open-Domain Conversation", author = "Juraska, Juraj and Bowden, Kevin and Walker, Marilyn", booktitle = "Proceedings of the 12th International Conference on Natural Language Generation", month = oct # "{--}" # nov, year = "2019", address = "Tokyo, Japan", publisher = "Association for Computational Linguistics", url = "https://aclanthology.org/W19-8623", doi = "10.18653/v1/W19-8623", pages = "164--172", } """ _DESCRIPTION = """\ ViGGO was designed for the task of data-to-text generation in chatbots (as opposed to task-oriented dialogue systems), with target responses being more conversational than information-seeking, yet constrained to the information presented in a meaning representation. The dataset, being relatively small and clean, can also serve for demonstrating transfer learning capabilities of neural models. """ _URLs = { "train": "train.csv", "validation": "validation.csv", "test": "test.csv", "challenge_train_1_percent": "challenge_train_1_percent.csv", "challenge_train_1_percent": "challenge_train_1_percent.csv", "challenge_train_1_percent": "challenge_train_1_percent.csv", "challenge_train_1_percent": "challenge_train_1_percent.csv", "challenge_train_1_percent": "challenge_train_1_percent.csv", "challenge_train_1_percent": "challenge_train_1_percent.csv", } class Viggo(datasets.GeneratorBasedBuilder): VERSION = datasets.Version("1.0.0") DEFAULT_CONFIG_NAME = "viggo" def _info(self): features = datasets.Features( { "gem_id": datasets.Value("string"), "meaning_representation": datasets.Value("string"), "target": datasets.Value("string"), "references": [datasets.Value("string")], } ) return datasets.DatasetInfo( description=_DESCRIPTION, features=features, supervised_keys=datasets.info.SupervisedKeysData( input="meaning_representation", output="target" ), homepage="https://nlds.soe.ucsc.edu/viggo", citation=_CITATION, ) def _split_generators(self, dl_manager): """Returns SplitGenerators.""" dl_dir = dl_manager.download_and_extract(_URLs) return [ datasets.SplitGenerator( name=spl, gen_kwargs={"filepath": dl_dir[spl], "split": spl} ) for spl in _URLs.keys() ] def _generate_examples(self, filepath, split, filepaths=None, lang=None): """Yields examples.""" with open(filepath, "r", encoding='utf-8-sig') as csvfile: reader = csv.DictReader(csvfile) for id_, row in enumerate(reader): yield id_, { "gem_id": f"cs_restaurants-{split}-{id_}", "meaning_representation": row["mr"], "target": row["ref"], "references": [row["ref"]], }