Datasets:
GEM
/

Modalities:
Text
Languages:
English
Libraries:
Datasets
License:
Sebastian Gehrmann commited on
Commit
403c49e
·
1 Parent(s): 4de7399

initial loader

Browse files
Files changed (2) hide show
  1. dataset_infos.json +1 -0
  2. viggo.py +83 -0
dataset_infos.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"default": {"description": "ViGGO was designed for the task of data-to-text generation in chatbots (as opposed to task-oriented dialogue systems), with target responses being more conversational than information-seeking, yet constrained to the information presented in a meaning representation. The dataset, being relatively small and clean, can also serve for demonstrating transfer learning capabilities of neural models.\n", "citation": "@inproceedings{juraska-etal-2019-viggo,\n title = \"{V}i{GGO}: A Video Game Corpus for Data-To-Text Generation in Open-Domain Conversation\",\n author = \"Juraska, Juraj and\n Bowden, Kevin and\n Walker, Marilyn\",\n booktitle = \"Proceedings of the 12th International Conference on Natural Language Generation\",\n month = oct # \"{--}\" # nov,\n year = \"2019\",\n address = \"Tokyo, Japan\",\n publisher = \"Association for Computational Linguistics\",\n url = \"https://aclanthology.org/W19-8623\",\n doi = \"10.18653/v1/W19-8623\",\n pages = \"164--172\",\n}\n", "homepage": "https://nlds.soe.ucsc.edu/viggo", "license": "", "features": {"gem_id": {"dtype": "string", "id": null, "_type": "Value"}, "meaning_representation": {"dtype": "string", "id": null, "_type": "Value"}, "target": {"dtype": "string", "id": null, "_type": "Value"}, "references": [{"dtype": "string", "id": null, "_type": "Value"}]}, "post_processed": null, "supervised_keys": {"input": "meaning_representation", "output": "target"}, "task_templates": null, "builder_name": "viggo", "config_name": "default", "version": {"version_str": "1.0.0", "description": null, "major": 1, "minor": 0, "patch": 0}, "splits": {"train": {"name": "train", "num_bytes": 2094490, "num_examples": 5103, "dataset_name": "viggo"}, "validation": {"name": "validation", "num_bytes": 285396, "num_examples": 714, "dataset_name": "viggo"}, "test": {"name": "test", "num_bytes": 415074, "num_examples": 1083, "dataset_name": "viggo"}, "challenge_train_1_percent": {"name": "challenge_train_1_percent", "num_bytes": 19585, "num_examples": 50, "dataset_name": "viggo"}}, "download_checksums": {"train.csv": {"num_bytes": 1370770, "checksum": "39d4bf7ef5b7b78c1c137d05d461e779884ad08cf53e0ee6cf63c3653c5f8aae"}, "validation.csv": {"num_bytes": 187448, "checksum": "c4d4b3b5075d84c1645cccd678e665e0d2a40226e3e9a383270a5c666006adbc"}, "test.csv": {"num_bytes": 268969, "checksum": "020f24199655b4c6f9246123263d2c6d3ea01189046150153dcc6cf8b914037a"}, "challenge_train_1_percent.csv": {"num_bytes": 11230, "checksum": "84a2540a71b5034c0d454899d6f68bfd2c0a48c7e3c6fb8e34723189bf818eaa"}}, "download_size": 1838417, "post_processing_size": null, "dataset_size": 2814545, "size_in_bytes": 4652962}}
viggo.py ADDED
@@ -0,0 +1,83 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import csv
2
+ import json
3
+ import os
4
+ import datasets
5
+
6
+ _CITATION = """\
7
+ @inproceedings{juraska-etal-2019-viggo,
8
+ title = "{V}i{GGO}: A Video Game Corpus for Data-To-Text Generation in Open-Domain Conversation",
9
+ author = "Juraska, Juraj and
10
+ Bowden, Kevin and
11
+ Walker, Marilyn",
12
+ booktitle = "Proceedings of the 12th International Conference on Natural Language Generation",
13
+ month = oct # "{--}" # nov,
14
+ year = "2019",
15
+ address = "Tokyo, Japan",
16
+ publisher = "Association for Computational Linguistics",
17
+ url = "https://aclanthology.org/W19-8623",
18
+ doi = "10.18653/v1/W19-8623",
19
+ pages = "164--172",
20
+ }
21
+ """
22
+
23
+ _DESCRIPTION = """\
24
+ ViGGO was designed for the task of data-to-text generation in chatbots (as opposed to task-oriented dialogue systems), with target responses being more conversational than information-seeking, yet constrained to the information presented in a meaning representation. The dataset, being relatively small and clean, can also serve for demonstrating transfer learning capabilities of neural models.
25
+ """
26
+
27
+ _URLs = {
28
+ "train": "train.csv",
29
+ "validation": "validation.csv",
30
+ "test": "test.csv",
31
+ "challenge_train_1_percent": "challenge_train_1_percent.csv",
32
+ "challenge_train_1_percent": "challenge_train_1_percent.csv",
33
+ "challenge_train_1_percent": "challenge_train_1_percent.csv",
34
+ "challenge_train_1_percent": "challenge_train_1_percent.csv",
35
+ "challenge_train_1_percent": "challenge_train_1_percent.csv",
36
+ "challenge_train_1_percent": "challenge_train_1_percent.csv",
37
+ }
38
+
39
+
40
+ class Viggo(datasets.GeneratorBasedBuilder):
41
+ VERSION = datasets.Version("1.0.0")
42
+ DEFAULT_CONFIG_NAME = "viggo"
43
+
44
+ def _info(self):
45
+ features = datasets.Features(
46
+ {
47
+ "gem_id": datasets.Value("string"),
48
+ "meaning_representation": datasets.Value("string"),
49
+ "target": datasets.Value("string"),
50
+ "references": [datasets.Value("string")],
51
+ }
52
+ )
53
+ return datasets.DatasetInfo(
54
+ description=_DESCRIPTION,
55
+ features=features,
56
+ supervised_keys=datasets.info.SupervisedKeysData(
57
+ input="meaning_representation", output="target"
58
+ ),
59
+ homepage="https://nlds.soe.ucsc.edu/viggo",
60
+ citation=_CITATION,
61
+ )
62
+
63
+ def _split_generators(self, dl_manager):
64
+ """Returns SplitGenerators."""
65
+ dl_dir = dl_manager.download_and_extract(_URLs)
66
+ return [
67
+ datasets.SplitGenerator(
68
+ name=spl, gen_kwargs={"filepath": dl_dir[spl], "split": spl}
69
+ )
70
+ for spl in _URLs.keys()
71
+ ]
72
+
73
+ def _generate_examples(self, filepath, split, filepaths=None, lang=None):
74
+ """Yields examples."""
75
+ with open(filepath, "r", encoding='utf-8-sig') as csvfile:
76
+ reader = csv.DictReader(csvfile)
77
+ for id_, row in enumerate(reader):
78
+ yield id_, {
79
+ "gem_id": f"cs_restaurants-{split}-{id_}",
80
+ "meaning_representation": row["mr"],
81
+ "target": row["ref"],
82
+ "references": [row["ref"]],
83
+ }