File size: 24,035 Bytes
dcce04e
 
 
 
 
a9c0b3a
2d746be
a9c0b3a
dcce04e
 
 
 
 
 
 
 
399cf2a
dcce04e
399cf2a
 
dcce04e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
---
annotations_creators:
- crowd-sourced
language_creators:
- unknown
language:
- it
license:
- cc-by-4.0
multilinguality:
- unknown
size_categories:
- unknown
source_datasets:
- original
task_categories:
- text2text-generation
task_ids:
- text-simplification
pretty_name: SIMPITIKI
---

# Dataset Card for GEM/SIMPITIKI

## Dataset Description

- **Homepage:** https://github.com/dhfbk/simpitiki
- **Repository:** https://github.com/dhfbk/simpitiki/tree/master/corpus
- **Paper:** http://ceur-ws.org/Vol-1749/paper52.pdf
- **Leaderboard:** N/A
- **Point of Contact:** Sara Tonelli

### Link to Main Data Card

You can find the main data card on the [GEM Website](https://gem-benchmark.com/data_cards/SIMPITIKI).

### Dataset Summary 

SIMPITIKI is an Italian Simplification dataset. Its examples were selected from Italian Wikipedia such that their editing tracking descriptions contain any of the words "Simplified"/"Simplify"/"Simplification". 

You can load the dataset via:
```
import datasets
data = datasets.load_dataset('GEM/SIMPITIKI')
```
The data loader can be found [here](https://huggingface.co./datasets/GEM/SIMPITIKI).

#### website
[Github](https://github.com/dhfbk/simpitiki)

#### paper
[Website](http://ceur-ws.org/Vol-1749/paper52.pdf)

#### authors
Sara Tonelli (Fondazione Bruno Kessler), Alessio Palmero Aprosio (Fondazione Bruno Kessler), Francesca Saltori (Fondazione Bruno Kessler)

## Dataset Overview

### Where to find the Data and its Documentation

#### Webpage

<!-- info: What is the webpage for the dataset (if it exists)? -->
<!-- scope: telescope -->
[Github](https://github.com/dhfbk/simpitiki)

#### Download

<!-- info: What is the link to where the original dataset is hosted? -->
<!-- scope: telescope -->
[Github](https://github.com/dhfbk/simpitiki/tree/master/corpus)

#### Paper

<!-- info: What is the link to the paper describing the dataset (open access preferred)? -->
<!-- scope: telescope -->
[Website](http://ceur-ws.org/Vol-1749/paper52.pdf)

#### BibTex

<!-- info: Provide the BibTex-formatted reference for the dataset. Please use the correct published version (ACL anthology, etc.) instead of google scholar created Bibtex. -->
<!-- scope: microscope -->
```
@article{tonelli2016simpitiki,
  title={SIMPITIKI: a Simplification corpus for Italian},
  author={Tonelli, Sara and Aprosio, Alessio Palmero and Saltori, Francesca},
  journal={Proceedings of CLiC-it},
  year={2016}
}
```

#### Contact Name

<!-- quick -->
<!-- info: If known, provide the name of at least one person the reader can contact for questions about the dataset. -->
<!-- scope: periscope -->
Sara Tonelli

#### Contact Email

<!-- info: If known, provide the email of at least one person the reader can contact for questions about the dataset. -->
<!-- scope: periscope -->
[email protected]

#### Has a Leaderboard?

<!-- info: Does the dataset have an active leaderboard? -->
<!-- scope: telescope -->
no


### Languages and Intended Use

#### Multilingual?

<!-- quick -->
<!-- info: Is the dataset multilingual? -->
<!-- scope: telescope -->
no

#### Covered Dialects

<!-- info: What dialects are covered? Are there multiple dialects per language? -->
<!-- scope: periscope -->
None

#### Covered Languages

<!-- quick -->
<!-- info: What languages/dialects are covered in the dataset? -->
<!-- scope: telescope -->
`Italian`

#### License

<!-- quick -->
<!-- info: What is the license of the dataset? -->
<!-- scope: telescope -->
cc-by-4.0: Creative Commons Attribution 4.0 International

#### Intended Use

<!-- info: What is the intended use of the dataset? -->
<!-- scope: microscope -->
The purpose of the dataset is to train NLG models to simplify complex text by learning different types of transformations (verb to noun, noun to verbs, deletion, insertion, etc)

#### Primary Task

<!-- info: What primary task does the dataset support? -->
<!-- scope: telescope -->
Simplification

#### Communicative Goal

<!-- quick -->
<!-- info: Provide a short description of the communicative goal of a model trained for this task on this dataset. -->
<!-- scope: periscope -->
This dataset aims to enhance research in text simplification in Italian language with different text transformations.


### Credit

#### Curation Organization Type(s)

<!-- info: In what kind of organization did the dataset curation happen? -->
<!-- scope: telescope -->
`academic`, `independent`

#### Curation Organization(s)

<!-- info: Name the organization(s). -->
<!-- scope: periscope -->
Fondazione Bruno Kessler (FBK)

#### Dataset Creators

<!-- info: Who created the original dataset? List the people involved in collecting the dataset and their affiliation(s). -->
<!-- scope: microscope -->
Sara Tonelli (Fondazione Bruno Kessler), Alessio Palmero Aprosio (Fondazione Bruno Kessler), Francesca Saltori (Fondazione Bruno Kessler)

#### Funding

<!-- info: Who funded the data creation? -->
<!-- scope: microscope -->
EU Horizon 2020 Programme via the SIMPATICO Project (H2020-EURO-6-2015, n. 692819)

#### Who added the Dataset to GEM?

<!-- info: Who contributed to the data card and adding the dataset to GEM? List the people+affiliations involved in creating this data card and who helped integrate this dataset into GEM. -->
<!-- scope: microscope -->
Sebastien Montella (Orange Labs), Vipul Raheja (Grammarly Inc.)


### Dataset Structure

#### Data Fields

<!-- info: List and describe the fields present in the dataset. -->
<!-- scope: telescope -->
Each sample comes with the following fields:

- `gem_id` (string): Unique sample ID
-`text` (string): The raw text to be simplified
-`simplified_text` (string): The simplified version of "text" field
-`transformation_type` (string): Nature of transformation applied to raw text in order to simplify it.
-`source_dataset` (string): Initial dataset source of sample. Values: 'itwiki' (for Italian Wikipedia) or 'tn' (manually annotated administrative documents from the Municipality of Trento, Italy)

#### Reason for Structure

<!-- info: How was the dataset structure determined? -->
<!-- scope: microscope -->
The dataset is organized as a pairs where the raw text (input) is associated with its simplified text (output). The editing transformation and the source dataset of each sample is also provided for advanced analysis.

#### How were labels chosen?

<!-- info: How were the labels chosen? -->
<!-- scope: microscope -->
SIMPITIKI dataset selects documents from Italian Wikipedia such that their editing tracking descriptions contain any of the words "Simplified"/"Simplify"/"Simplification".  For the Public Administration domain of the documents of the Municipality of Trento (Italy)

#### Example Instance

<!-- info: Provide a JSON formatted example of a typical instance in the dataset. -->
<!-- scope: periscope -->
```
{"transformation_id": 31, "transformation_type": "Transformation - Lexical Substitution (word level)", "source_dataset": "tn", "text": "- assenza per <del>e</del>si<del>genze</del> particolari attestate da relazione dei servizi sociali;", "simplified_text": "- assenza per <ins>bi</ins>s<ins>ogn</ins>i particolari attestati da relazione dei servizi sociali;"}
```

#### Data Splits

<!-- info: Describe and name the splits in the dataset if there are more than one. -->
<!-- scope: periscope -->
Several splits are proposed to train models on different configurations:

-"train": Training samples randomly selected from initial corpus. 816 training samples.
-"validation": Validating samples randomly selected from initial corpus. 174 validating samples.
-"test": Testing samples randomly selected from initial corpus. 176 validating samples.
-"challenge_seen_transformations_train": This training challenge split includes specific transformations to simplify the raw text. Precisely, transformations are "Split", "Merge", "Reordering", "Insert - Verb", "Insert - Other", "Delete - Verb", "Delete - Other", "Transformation - Lexical Substitution (word level)", "Transformation - Anaphoric replacement", "Transformation - Noun to Verb", "Transformation - Verbal Features". 562 training samples.
-"challenge_seen_transformations_val": This validating challenge split includes same transformations than the ones observed in training. Precisely, transformations are "Split", "Merge", "Reordering", "Insert - Verb", "Insert - Other", "Delete - Verb", "Delete - Other", "Transformation - Lexical Substitution (word level)", "Transformation - Anaphoric replacement", "Transformation - Noun to Verb", "Transformation - Verbal Features". 121 validating samples.
-"challenge_seen_transformations_test": This testing challenge split includes same transformations than the ones observed in training. Precisely, transformations are "Split", "Merge", "Reordering", "Insert - Verb", "Insert - Other", "Delete - Verb", "Delete - Other", "Transformation - Lexical Substitution (word level)", "Transformation - Anaphoric replacement", "Transformation - Noun to Verb", "Transformation - Verbal Features". 127 testing samples.
-"challenge_unseen_transformations_test" : "Insert - Subject", "Delete - Subject", "Transformation - Lexical Substitution (phrase level)", "Transformation - Verb to Noun (nominalization)", "Transformation - Verbal Voice". 356 testing samples.
-"challenge_itwiki_train": This challenge split includes random samples from the Italian Wikipedia as source dataset. 402 training samples.
-"challenge_itwiki_val": This validating challenge split includes random samples from the Italian Wikipedia as source dataset. 86 validating samples.
-"challenge_itwiki_test": This testing challenge split includes random samples from the Italian Wikipedia as source dataset. 87 testing samples.
-"challenge_tn_test": This testing challenge split includes all samples from the Municipality of Trento administrative documents ('tn') as source dataset. 591 testing samples.





#### Splitting Criteria

<!-- info: Describe any criteria for splitting the data, if used. If there are differences between the splits (e.g., if the training annotations are machine-generated and the dev and test ones are created by humans, or if different numbers of annotators contributed to each example), describe them here. -->
<!-- scope: microscope -->
The training ratio is set to 0.7. The validation and test somehow equally divide the remaining 30% of the dataset. 



## Dataset in GEM

### Rationale for Inclusion in GEM

#### Why is the Dataset in GEM?

<!-- info: What does this dataset contribute toward better generation evaluation and why is it part of GEM? -->
<!-- scope: microscope -->
This dataset promotes Simplification task for Italian language.

#### Similar Datasets

<!-- info: Do other datasets for the high level task exist? -->
<!-- scope: telescope -->
no

#### Ability that the Dataset measures

<!-- info: What aspect of model ability can be measured with this dataset? -->
<!-- scope: periscope -->
Models can be evaluated if they can simplify text regarding different simplification transformations.


### GEM-Specific Curation

#### Modificatied for GEM?

<!-- info: Has the GEM version of the dataset been modified in any way (data, processing, splits) from the original curated data? -->
<!-- scope: telescope -->
yes

#### Additional Splits?

<!-- info: Does GEM provide additional splits to the dataset? -->
<!-- scope: telescope -->
yes

#### Split Information

<!-- info: Describe how the new splits were created -->
<!-- scope: periscope -->
The SIMPITIKI dataset provides a single file. Several splits are proposed to train models on different configurations:
-"train": Training samples randomly selected from initial corpus. 816 training samples.
-"validation": Validating samples randomly selected from initial corpus. 174 validating samples.
-"test": Testing samples randomly selected from initial corpus. 176 validating samples.
-"challenge_seen_transformations_train": This training challenge split includes specific transformations to simplify the raw text. Precisely, transformations are "Split", "Merge", "Reordering", "Insert - Verb", "Insert - Other", "Delete - Verb", "Delete - Other", "Transformation - Lexical Substitution (word level)", "Transformation - Anaphoric replacement", "Transformation - Noun to Verb", "Transformation - Verbal Features". 562 training samples.
-"challenge_seen_transformations_val": This validating challenge split includes same transformations than the ones observed in training. Precisely, transformations are "Split", "Merge", "Reordering", "Insert - Verb", "Insert - Other", "Delete - Verb", "Delete - Other", "Transformation - Lexical Substitution (word level)", "Transformation - Anaphoric replacement", "Transformation - Noun to Verb", "Transformation - Verbal Features". 121 validating samples.
-"challenge_seen_transformations_test": This testing challenge split includes same transformations than the ones observed in training. Precisely, transformations are "Split", "Merge", "Reordering", "Insert - Verb", "Insert - Other", "Delete - Verb", "Delete - Other", "Transformation - Lexical Substitution (word level)", "Transformation - Anaphoric replacement", "Transformation - Noun to Verb", "Transformation - Verbal Features". 127 testing samples.
-"challenge_unseen_transformations_test" : "Insert - Subject", "Delete - Subject", "Transformation - Lexical Substitution (phrase level)", "Transformation - Verb to Noun (nominalization)", "Transformation - Verbal Voice". 356 testing samples.
-"challenge_itwiki_train": This challenge split includes random samples from the Italian Wikipedia as source dataset. 402 training samples.
-"challenge_itwiki_val": This validating challenge split includes random samples from the Italian Wikipedia as source dataset. 86 validating samples.
-"challenge_itwiki_test": This testing challenge split includes random samples from the Italian Wikipedia as source dataset. 87 testing samples.
-"challenge_tn_test": This testing challenge split includes all samples from the Municipality of Trento administrative documents ('tn') as source dataset. 591 testing samples.





#### Split Motivation

<!-- info: What aspects of the model's generation capacities were the splits created to test? -->
<!-- scope: periscope -->
The splits allows to investigate the generalization of models regarding editing/transformations ("challenge_seen_transformations_test" / "challenge_unseen_transformations_test") and for transfer learning to different domain ("challenge_tn_test")


### Getting Started with the Task

#### Pointers to Resources

<!-- info: Getting started with in-depth research on the task. Add relevant pointers to resources that researchers can consult when they want to get started digging deeper into the task. -->
<!-- scope: microscope -->
- Coster and Kauchak, Simple English Wikipedia: A New Text Simplification Task, Proceedings of the 49th Annual Meeting of the Association for Computational Linguistics, pages 665–669, Portland, Oregon, June 19-24, 2011
- Xu et al, Optimizing Statistical Machine Translation for Text Simplification, Transactions of the Association for Computational Linguistics, vol. 4, pp. 401–415, 2016
- Aprosio et al, Neural Text Simplification in Low-Resource Conditions Using Weak Supervision, Proceedings of the Workshop on Methods for Optimizing and Evaluating Neural Language Generation (NeuralGen), pages 37–44, Minneapolis, Minnesota, USA, June 6, 2019


#### Technical Terms

<!-- info: Technical terms used in this card and the dataset and their definitions -->
<!-- scope: microscope -->
Simplification: Process that consists in transforming an input text to its simplified version.




## Previous Results

### Previous Results

#### Measured Model Abilities

<!-- info: What aspect of model ability can be measured with this dataset? -->
<!-- scope: telescope -->
The splits allows to investigate the generalization of models regarding editing/transformations ("challenge_seen_transformations_test" / "challenge_unseen_transformations_test") and for transfer learning to different domain ("challenge_tn_test")

#### Metrics

<!-- info: What metrics are typically used for this task? -->
<!-- scope: periscope -->
`BLEU`, `Other: Other Metrics`

#### Other Metrics

<!-- info: Definitions of other metrics -->
<!-- scope: periscope -->
FKBLEU (https://aclanthology.org/Q16-1029.pdf): Combines Flesch-Kincaid Index and iBLEU metrics.
SARI (https://aclanthology.org/Q16-1029.pdf): Compares system output against references and against the input sentence. It explicitly measures the goodness of words that are added, deleted and kept by the systems 
Word-level F1



#### Previous results available?

<!-- info: Are previous results available? -->
<!-- scope: telescope -->
no



## Dataset Curation

### Original Curation

#### Original Curation Rationale

<!-- info: Original curation rationale -->
<!-- scope: telescope -->
Most of the resources for Text Simplification are in English. To stimulate research to different languages, SIMPITIKI proposes an Italian corpus  with Complex-Simple sentence pairs. 

#### Communicative Goal

<!-- info: What was the communicative goal? -->
<!-- scope: periscope -->
Text simplification allows a smooth reading of text to enhance understanding.

#### Sourced from Different Sources

<!-- info: Is the dataset aggregated from different data sources? -->
<!-- scope: telescope -->
yes

#### Source Details

<!-- info: List the sources (one per line) -->
<!-- scope: periscope -->
Italian Wikipedia
(Manually) Annotated administrative documents from the Municipality of Trento, Italy


### Language Data

#### How was Language Data Obtained?

<!-- info: How was the language data obtained? -->
<!-- scope: telescope -->
`Found`

#### Where was it found?

<!-- info: If found, where from? -->
<!-- scope: telescope -->
`Single website`, `Offline media collection`

#### Language Producers

<!-- info: What further information do we have on the language producers? -->
<!-- scope: microscope -->
SIMPITIKI is a combination of documents from Italian Wikipedia and from the Municipality of Trento, Italy.


#### Topics Covered

<!-- info: Does the language in the dataset focus on specific topics? How would you describe them? -->
<!-- scope: periscope -->
Samples from documents from the Municipality of Trento corpus are in the administrative domain.

#### Data Validation

<!-- info: Was the text validated by a different worker or a data curator? -->
<!-- scope: telescope -->
validated by data curator

#### Was Data Filtered?

<!-- info: Were text instances selected or filtered? -->
<!-- scope: telescope -->
not filtered


### Structured Annotations

#### Additional Annotations?

<!-- quick -->
<!-- info: Does the dataset have additional annotations for each instance? -->
<!-- scope: telescope -->
crowd-sourced

#### Number of Raters

<!-- info: What is the number of raters -->
<!-- scope: telescope -->
unknown

#### Rater Qualifications

<!-- info: Describe the qualifications required of an annotator. -->
<!-- scope: periscope -->
Native speaker

#### Raters per Training Example

<!-- info: How many annotators saw each training example? -->
<!-- scope: periscope -->
0

#### Raters per Test Example

<!-- info: How many annotators saw each test example? -->
<!-- scope: periscope -->
0

#### Annotation Service?

<!-- info: Was an annotation service used? -->
<!-- scope: telescope -->
unknown

#### Annotation Values

<!-- info: Purpose and values for each annotation -->
<!-- scope: microscope -->
Annotators specified any of the tags as designed by Brunato et al. (https://aclanthology.org/W15-1604/):
-Split: Splitting a clause into two clauses.
-Merge: Merge two or more clauses together.
-Reordering:  Word order changes.
-Insert: Insertion of words or phrases that provide supportive information to the original sentence
-Delete: dropping redundant information.
-Transformation: Modification which can affect the sentence at the lexical, morpho-syntactic and syntactic level: Lexical substitution (word level) / Lexical substitution (phrase level) / Anaphoric replacement / Noun to Verb / Verb to Noun / Verbal voice / Verbal features/ morpho–syntactic and syntactic level, also giving rise to overlapping phenomena



#### Any Quality Control?

<!-- info: Quality control measures? -->
<!-- scope: telescope -->
unknown


### Consent

#### Any Consent Policy?

<!-- info: Was there a consent policy involved when gathering the data? -->
<!-- scope: telescope -->
no

#### Justification for Using the Data

<!-- info: If not, what is the justification for reusing the data? -->
<!-- scope: microscope -->
The dataset is available online under the CC-BY 4.0 license.


### Private Identifying Information (PII)

#### Contains PII?

<!-- quick -->
<!-- info: Does the source language data likely contain Personal Identifying Information about the data creators or subjects? -->
<!-- scope: telescope -->
likely

#### Categories of PII

<!-- info: What categories of PII are present or suspected in the data? -->
<!-- scope: periscope -->
`generic PII`

#### Any PII Identification?

<!-- info: Did the curators use any automatic/manual method to identify PII in the dataset? -->
<!-- scope: periscope -->
no identification


### Maintenance

#### Any Maintenance Plan?

<!-- info: Does the original dataset have a maintenance plan? -->
<!-- scope: telescope -->
no



## Broader Social Context

### Previous Work on the Social Impact of the Dataset

#### Usage of Models based on the Data

<!-- info: Are you aware of cases where models trained on the task featured in this dataset ore related tasks have been used in automated systems? -->
<!-- scope: telescope -->
no


### Impact on Under-Served Communities

#### Addresses needs of underserved Communities?

<!-- info: Does this dataset address the needs of communities that are traditionally underserved in language technology, and particularly language generation technology? Communities may be underserved for exemple because their language, language variety, or social or geographical context is underepresented in NLP and NLG resources (datasets and models). -->
<!-- scope: telescope -->
yes

#### Details on how Dataset Addresses the Needs

<!-- info: Describe how this dataset addresses the needs of underserved communities. -->
<!-- scope: microscope -->
The creator of SIMPITIKI wants to promote text simplification for Italian because few resources are available in other languages than English.


### Discussion of Biases

#### Any Documented Social Biases?

<!-- info: Are there documented social biases in the dataset? Biases in this context are variations in the ways members of different social categories are represented that can have harmful downstream consequences for members of the more disadvantaged group. -->
<!-- scope: telescope -->
unsure



## Considerations for Using the Data

### PII Risks and Liability



### Licenses

#### Copyright Restrictions on the Dataset

<!-- info: Based on your answers in the Intended Use part of the Data Overview Section, which of the following best describe the copyright and licensing status of the dataset? -->
<!-- scope: periscope -->
`research use only`

#### Copyright Restrictions on the Language Data

<!-- info: Based on your answers in the Language part of the Data Curation Section, which of the following best describe the copyright and licensing status of the underlying language data? -->
<!-- scope: periscope -->
`research use only`


### Known Technical Limitations

#### Discouraged Use Cases

<!-- info: What are some discouraged use cases of a model trained to maximize the proposed metrics on this dataset? In particular, think about settings where decisions made by a model that performs reasonably well on the metric my still have strong negative consequences for user or members of the public. -->
<!-- scope: microscope -->
The risk of surface-based metrics (BLEU, chrf++, etc) for this task is that semantic adequacy is not respected when simplifying the input document.