Datasets:

Modalities:
Text
Formats:
json
ArXiv:
Libraries:
Datasets
pandas
License:
File size: 7,223 Bytes
7d586e4
 
3849321
1887785
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5068040
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7d586e4
16cef02
 
 
 
07de217
 
f6702a9
16cef02
07de217
 
16cef02
 
 
07de217
189ae33
16cef02
 
07de217
16cef02
 
dd2d938
9cc6fe5
 
21353f7
16cef02
 
21353f7
 
 
07de217
dd2d938
ed3c4bb
 
 
 
 
 
 
07de217
 
 
 
 
38f53e9
07de217
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
16cef02
 
 
 
 
 
 
 
07de217
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
---
license: apache-2.0
configs:
  - config_name: pretrain_text
    data_files:
      - split: medicalBook_en
        path: train/pretrain/medicalBook_en_text.json
      - split: medicalBook_zh
        path: train/pretrain/medicalBook_zh_text.json
      - split: medicalGuideline_en
        path: train/pretrain/medicalGuideline_en_text.json
      - split: medicalPaper_en
        path: train/pretrain/medicalPaper_en_text.json
      - split: medicalPaper_es
        path: train/pretrain/medicalPaper_es_text.json
      - split: medicalPaper_fr
        path: train/pretrain/medicalPaper_fr_text.json
      - split: medicalPaper_zh
        path: train/pretrain/medicalPaper_zh_text.json
      - split: medicalWeb_en
        path: train/pretrain/medicalWeb_en_text.json
      - split: medicalWeb_es
        path: train/pretrain/medicalWeb_es_text.json
      - split: medicalWeb_zh
        path: train/pretrain/medicalWeb_zh_text.json
      - split: medicalWiki_en
        path: train/pretrain/medicalWiki_en_text.json
      - split: medicalWiki_fr
        path: train/pretrain/medicalWiki_fr_text.json
      - split: medicalWiki_hi
        path: train/pretrain/medicalWiki_hi_text.json
  # - config_name: pretrain_qa
  #   data_files:
  #     - split: medicalBook_en
  #       path: train/pretrain/medicalBook_en_qa.json
  #     - split: medicalBook_zh
  #       path: train/pretrain/medicalBook_zh_qa.json
  #     - split: medicalGuideline_en
  #       path: train/pretrain/medicalGuideline_en_qa.json
  #     - split: medicalPaper_en
  #       path: train/pretrain/medicalPaper_en_qa.json
  #     - split: medicalPaper_es
  #       path: train/pretrain/medicalPaper_es_qa.json
  #     - split: medicalPaper_fr
  #       path: train/pretrain/medicalPaper_fr_qa.json
  #     - split: medicalPaper_zh
  #       path: train/pretrain/medicalPaper_zh_qa.json
  #     - split: medicalWeb_en
  #       path: train/pretrain/medicalWeb_en_qa.json
  #     - split: medicalWeb_es
  #       path: train/pretrain/medicalWeb_es_qa.json
  #     - split: medicalWeb_zh
  #       path: train/pretrain/medicalWeb_zh_qa.json
  #     - split: medicalWiki_en
  #       path: train/pretrain/medicalWiki_en_qa.json
  #     - split: medicalWiki_fr
  #       path: train/pretrain/medicalWiki_fr_qa.json
  #     - split: medicalWiki_hi
  #       path: train/pretrain/medicalWiki_hi_qa.json
  # - config_name: sft
  #   data_files:
  #     - split: code_en
  #       path: train/sft/code_en.json
  #     - split: code_zh
  #       path: train/sft/code_zh.json
  #     - split: general_ar
  #       path: train/sft/general_ar.json
  #     - split: general_en
  #       path: train/sft/general_en.json
  #     - split: general_es
  #       path: train/sft/general_es.json
  #     - split: general_fr
  #       path: train/sft/general_fr.json
  #     - split: general_hi
  #       path: train/sft/general_hi.json
  #     - split: general_zh
  #       path: train/sft/general_zh.json
  #     - split: math_en
  #       path: train/sft/math_en.json
  #     - split: math_zh
  #       path: train/sft/math_zh.json
  #     - split: medicalExam_en
  #       path: train/sft/medicalExam_en_clean.json
  #     - split: medicalExam_es
  #       path: train/sft/medicalExam_es_clean.json
  #     - split: medicalExam_fr
  #       path: train/sft/medicalExam_fr_clean.json
  #     - split: medicalExam_zh
  #       path: train/sft/medicalExam_zh_clean.json
  #     - split: medicalPatient_ar
  #       path: train/sft/medicalPatient_ar.json
  #     - split: medicalPatient_en
  #       path: train/sft/medicalPatient_en.json
  #     - split: medicalPatient_zh
  #       path: train/sft/medicalPatient_zh.json
---
# Multilingual Medicine: Model, Dataset, Benchmark, Code

Covering English, Chinese, French, Hindi, Spanish, Hindi, Arabic So far


<p align="center">
   👨🏻‍💻<a href="https://github.com/FreedomIntelligence/Apollo" target="_blank">Github</a> •📃 <a href="https://arxiv.org/abs/2403.03640" target="_blank">Paper</a> • 🌐 <a href="https://apollo.llmzoo.com/" target="_blank">Demo</a> • 🤗 <a href="https://huggingface.co./datasets/FreedomIntelligence/ApolloCorpus" target="_blank">ApolloCorpus</a> • 🤗 <a href="https://huggingface.co./datasets/FreedomIntelligence/XMedbench" target="_blank">XMedBench</a> 
   <br>  <a href="./README_zh.md"> 中文 </a> | <a href="./README.md"> English
</p>

![Apollo](assets/apollo_medium_final.png)

## 🌈 Update

* **[2024.03.07]** [Paper](https://arxiv.org/abs/2403.03640) released.
* **[2024.02.12]** <a href="https://huggingface.co./datasets/FreedomIntelligence/ApolloCorpus" target="_blank">ApolloCorpus</a> and  <a href="https://huggingface.co./datasets/FreedomIntelligence/XMedbench" target="_blank">XMedBench</a>  is published!🎉
* **[2024.01.23]** Apollo repo is published!🎉


## Results

  <a href="https://huggingface.co./FreedomIntelligence/Apollo-0.5B" target="_blank">Apollo-0.5B</a> • 🤗 <a href="https://huggingface.co./FreedomIntelligence/Apollo-1.8B" target="_blank">Apollo-1.8B</a> • 🤗 <a href="https://huggingface.co./FreedomIntelligence/Apollo-2B" target="_blank">Apollo-2B</a>  • 🤗 <a href="https://huggingface.co./FreedomIntelligence/Apollo-6B" target="_blank">Apollo-6B</a> • 🤗 <a href="https://huggingface.co./FreedomIntelligence/Apollo-7B" target="_blank">Apollo-7B</a>

   <details><summary>Click to expand</summary>
   
   ![Apollo](assets/result.png)
      
   
   </details>

## Data: Huge, Diverse, Clean, Multilingual


   
   ![Apollo](assets/dataset.png)
      
   
   
## Usage

- [Zip File](https://huggingface.co./datasets/FreedomIntelligence/Medbase_data/blob/main/Medbase_data-datasets.zip)
- [Data category](https://huggingface.co./datasets/FreedomIntelligence/Medbase_data/tree/main/train)
  - Pretrain:
    - json_name: {data_source}_\{language}_\{data_type}.json
      - data_type: medicalBook, medicalGuideline, medicalPaper, medicalWeb(from online forum), medicalWiki
      - language: en(English), zh(chinese), es(spanish), fr(french), hi(Hindi)
      - data_type: qa(generated qa from text)
    - data item:
      - data_type==text: list of string
        ```
        [
          "string1",
          "string2",
          ...
        ]
        ```
      - data_type==qa: list of qa pairs(list of string)
        ```
        [
          [
            "q1",
            "a1",
            "q2",
            "a2",
            ...
          ],
          ...
        ]
        ```

  - SFT:
    - json_name: {data_source}_{language}.json
      - data_type: code, general, math, medicalExam, medicalPatient
    - data item: list of qa pairs(list of string)
      ```
        [
          [
            "q1",
            "a1",
            "q2",
            "a2",
            ...
          ],
          ...
        ]
        ```

    



## Citation

```
@misc{wang2024apollo,
   title={Apollo: Lightweight Multilingual Medical LLMs towards Democratizing Medical AI to 6B People},
   author={Xidong Wang and Nuo Chen and Junyin Chen and Yan Hu and Yidong Wang and Xiangbo Wu and Anningzhe Gao and Xiang Wan and Haizhou Li and Benyou Wang},
   year={2024},
   eprint={2403.03640},
   archivePrefix={arXiv},
   primaryClass={cs.CL}
}
```