|
|
|
"""UEFA_Euro2020_Processing.ipynb |
|
|
|
Automatically generated by Colaboratory. |
|
|
|
Original file is located at |
|
https://colab.research.google.com/drive/14eW1QiGXrszsqNFVKnT7WjDyDmxVuIve |
|
""" |
|
|
|
import pandas as pd |
|
import numpy as np |
|
from functools import reduce |
|
|
|
match_events = pd.read_csv('/content/Match events.csv') |
|
match_information = pd.read_csv('/content/Match information.csv') |
|
match_line_up = pd.read_csv('/content/Match line-ups.csv') |
|
match_player_stats = pd.read_csv('/content/player_stats.csv') |
|
match_team_stats = pd.read_csv('/content/Match team statistics.csv') |
|
pre_match_info = pd.read_csv('/content/Pre-match information.csv') |
|
|
|
|
|
match_information['RefereeWebName'] = match_information['RefereeWebName'].fillna("Rapallini") |
|
|
|
|
|
Euro2020_df = match_information.copy() |
|
|
|
|
|
|
|
Euro2020_df.insert(loc=5, column = "Stage", value = np.where(Euro2020_df['MatchDay'] <= 3, 'Group Stage', 'Knockout Stage')) |
|
|
|
|
|
|
|
Euro2020_df.insert(loc=17, column='NumberofMatchesRefereedPostMatch', |
|
value=Euro2020_df.groupby('RefereeWebName').cumcount().astype(int) + 1) |
|
Euro2020_df.insert(loc=18, column='TotalNumberofMatchesRefereed', |
|
value=Euro2020_df.groupby('RefereeWebName')['RefereeWebName'].transform('count').astype(int)) |
|
|
|
Euro2020_df.insert(loc=19, column = 'NumberofMatchesRefereedinGroupStage', |
|
value = Euro2020_df.groupby('RefereeWebName')['Stage'].transform(lambda x: (x == 'Group Stage').sum())) |
|
|
|
Euro2020_df.insert(loc=20, column = 'NumberofMatchesRefereedinKnockoutStage', |
|
value = Euro2020_df.groupby('RefereeWebName')['Stage'].transform(lambda x: (x == 'Knockout Stage').sum())) |
|
|
|
|
|
|
|
|
|
nested = match_events.iloc[:,[0] + list(range(3, 13))] |
|
|
|
|
|
separate = match_events.iloc[:,0:3].drop_duplicates().set_index("MatchID") |
|
|
|
|
|
nested_structure = (nested.groupby(['MatchID', 'Phase']) |
|
.apply(lambda x: x.drop('MatchID', axis=1).to_dict('records')) |
|
.reset_index(name='Events') |
|
.pivot(index='MatchID', columns="Phase", values='Events')) |
|
|
|
|
|
phase_names = { |
|
1: '1-First Half', |
|
2: '2-Second Half', |
|
3: '3-Extra Time First Half', |
|
4: '4-Extra Time Second Half', |
|
5: '5-Penalty Shootout' |
|
} |
|
nested_structure.rename(columns=phase_names, inplace=True) |
|
|
|
|
|
nested_structure['MatchEvent'] = nested_structure.apply(lambda row: {phase: events for phase, events in row.items()}, axis=1) |
|
|
|
nested_structure.drop(columns=phase_names.values(), inplace=True) |
|
|
|
nested_match_events = separate.join(nested_structure).reset_index() |
|
nested_match_events = nested_match_events.drop(nested_match_events.columns[[1, 2]],axis=1) |
|
|
|
|
|
|
|
line_up_merged = pd.merge(match_line_up, pre_match_info.iloc[:,[0,3,4,7]], |
|
on=['MatchID','ID'], how='left') |
|
|
|
|
|
|
|
|
|
staff_vars = ['Country', 'ID', 'OfficialName', 'OfficialSurname', 'ShortName', 'Role'] |
|
player_vars = [col for col in line_up_merged.columns if col not in ['MatchID', 'HomeTeamName', 'AwayTeamName', |
|
'IsPitch', 'IsBench', 'IsStaff', 'IsHomeTeam','IsAwayTeam']] |
|
|
|
|
|
def create_team_structure(x, is_home_team): |
|
if is_home_team: |
|
|
|
squad_df = x[x['IsHomeTeam'] == True].copy() |
|
else: |
|
|
|
squad_df = x[x['IsHomeTeam'] == False].copy() |
|
|
|
|
|
starting_11 = squad_df[squad_df['IsPitch']][player_vars] |
|
|
|
|
|
benched_players = squad_df[squad_df['IsBench']][player_vars] |
|
|
|
|
|
staff = squad_df[squad_df['IsStaff']][staff_vars] |
|
|
|
return {'Starting11': starting_11.to_dict('records'), |
|
'Benched Players': benched_players.to_dict('records'), |
|
'Staff': staff.to_dict('records')} |
|
|
|
|
|
nested_line_up = line_up_merged.groupby('MatchID').apply(lambda line_up_merged: { |
|
'HomeTeamLineUp': create_team_structure(line_up_merged, True), |
|
'AwayTeamLineUp': create_team_structure(line_up_merged, False) |
|
}).reset_index(name='TeamLineUps') |
|
|
|
|
|
|
|
|
|
|
|
team_unique = list(match_team_stats['StatsName'].unique()) |
|
print(team_unique) |
|
|
|
player_unique = list(match_player_stats['StatsName'].unique()) |
|
print(player_unique) |
|
|
|
set1 = set(team_unique) |
|
set2 = set(player_unique) |
|
|
|
|
|
difference1 = set1 - set2 |
|
|
|
|
|
difference2 = set2 - set1 |
|
|
|
|
|
diff_list1 = list(difference1) |
|
diff_list2 = list(difference2) |
|
|
|
print(diff_list1) |
|
print(diff_list2) |
|
|
|
|
|
attacking = [team_unique[0]] + team_unique[2:8] + [team_unique[22]] + team_unique[24:56] + team_unique[58:74] + team_unique[93:106] + [team_unique[120]] + [team_unique[178]] + team_unique[182:184] + team_unique[186:189] + [team_unique[192]] |
|
possession = [team_unique[1]] + team_unique[16:18] + [team_unique[56]] + team_unique[74:93] + team_unique[112:119] |
|
violation_foul_discipline = [team_unique[8]] + team_unique[13:16] + team_unique[147:156] |
|
goalkeeping = [team_unique[9]] + team_unique[125:146] + team_unique[189:191] |
|
defending = team_unique[10:13] + [team_unique[21]] + [team_unique[23]] + team_unique[106:112] + [team_unique[119]] + team_unique[121:125] |
|
coverage_speed = team_unique[18:21] + team_unique[156:169] + [team_unique[177]] + team_unique[179:181] + team_unique[184:186] + [team_unique[191]] |
|
time_stats = [team_unique[57]] + [team_unique[146]] + team_unique[169:177] |
|
matches_played = [team_unique[181]] |
|
|
|
|
|
set3 = set(attacking+possession+violation_foul_discipline+goalkeeping+defending+coverage_speed+time_stats+matches_played) |
|
set4 = set(team_unique) |
|
difff = list(set4-set3) |
|
difff |
|
|
|
|
|
|
|
player_time_stats = time_stats + [diff_list2[0]] + [diff_list2[2]] + [diff_list2[4]] |
|
player_coverage_speed = coverage_speed + [diff_list2[1]] + [diff_list2[3]] |
|
|
|
|
|
|
|
def assign_category(name): |
|
if name in attacking: |
|
return 'attacking' |
|
elif name in possession: |
|
return 'possession' |
|
elif name in violation_foul_discipline: |
|
return 'violation&foul&discipline' |
|
elif name in goalkeeping: |
|
return 'goalkeeping' |
|
elif name in defending: |
|
return 'defending' |
|
elif name in coverage_speed or name in player_coverage_speed: |
|
return 'coverage&speed' |
|
elif name in time_stats or name in player_time_stats: |
|
return 'time stats' |
|
elif name in matches_played: |
|
return 'matches played' |
|
|
|
|
|
match_team_stats['StatsCategory'] = match_team_stats['StatsName'].apply(lambda name: assign_category(name)) |
|
match_player_stats['StatsCategory'] = match_player_stats['StatsName'].apply(lambda name: assign_category(name)) |
|
|
|
|
|
stats_details_cols = ['TeamID', 'TeamName', 'StatsID', 'StatsName', 'Value', 'Rank'] |
|
|
|
|
|
def nested_stats(group): |
|
|
|
home_stats = group[group['IsHomeTeam']] |
|
away_stats = group[group['IsAwayTeam']] |
|
|
|
|
|
def stats_by_category(team_stats): |
|
return team_stats.groupby('StatsCategory')[stats_details_cols].apply(lambda x: x.to_dict('records')).to_dict() |
|
|
|
|
|
nested_stats_dict = { |
|
'HomeTeamStats': stats_by_category(home_stats), |
|
'AwayTeamStats': stats_by_category(away_stats) |
|
} |
|
|
|
return nested_stats_dict |
|
|
|
|
|
nested_team_stats = match_team_stats.groupby('MatchID').apply(nested_stats).reset_index(name='TeamStats') |
|
|
|
|
|
player_stats_details = ['PlayerID', 'PlayerName', 'PlayerSurname', 'IsGoalkeeper', 'PlayedTime', 'StatsID', 'StatsName', 'Value', 'Rank'] |
|
|
|
pre_match = pre_match_info.copy() |
|
pre_match.rename(columns={'ID': 'PlayerID'}, inplace=True) |
|
player_stats_merged = pd.merge(match_player_stats, pre_match.iloc[:,[0,3,4,7]], |
|
on=['MatchID','PlayerID'], how='left') |
|
|
|
|
|
def nested_stats(group): |
|
|
|
home_stats = group[group['IsHomeTeam']] |
|
away_stats = group[group['IsAwayTeam']] |
|
|
|
|
|
def stats_by_category(player_stats): |
|
return player_stats.groupby('StatsCategory')[player_stats_details].apply(lambda x: x.to_dict('records')).to_dict() |
|
|
|
|
|
nested_stats_dict = { |
|
'HomeTeamPlayerStats': stats_by_category(home_stats), |
|
'AwayTeamPlayerStats': stats_by_category(away_stats) |
|
} |
|
|
|
return nested_stats_dict |
|
|
|
|
|
nested_player_stats = player_stats_merged.groupby('MatchID').apply(nested_stats).reset_index(name='PlayerStats') |
|
|
|
|
|
players_info = pre_match[pre_match['IsStaff'] == False] |
|
|
|
|
|
player_info_vars = ['PlayerID', 'OfficialName', 'OfficialSurname', 'JerseyName', 'ShortName', 'GoalScored', 'CleanSheet', 'SuspendedIfBooked', 'Role'] |
|
|
|
|
|
def create_player_structure(df, is_home_team): |
|
|
|
home_team_players = df[df['IsHomeTeam'] == is_home_team][player_info_vars] |
|
|
|
return home_team_players.to_dict('records') |
|
|
|
|
|
nested_structure = { |
|
'MatchID': [], |
|
'PlayerPreMatchInfo': [] |
|
} |
|
|
|
for match_id, group in players_info.groupby('MatchID'): |
|
nested_structure['MatchID'].append(match_id) |
|
nested_structure['PlayerPreMatchInfo'].append({ |
|
'HomeTeamPlayerInfo': create_player_structure(group, True), |
|
'AwayTeamPlayerInfo': create_player_structure(group, False) |
|
}) |
|
|
|
|
|
nested_player_pre_match_info = pd.DataFrame(nested_structure) |
|
|
|
|
|
all_dfs = [Euro2020_df,nested_match_events,nested_line_up,nested_team_stats,nested_player_stats,nested_player_pre_match_info] |
|
|
|
|
|
Euro2020_df_final = reduce(lambda left, right: pd.merge(left, right, on='MatchID', how='outer'), all_dfs) |
|
Euro2020_df_final |
|
|
|
Euro2020_df_final.to_csv('Euro2020.csv', index=False) |
|
|
|
Euro2020_df_final.to_json('Euro2020.json', orient='records', lines=False) |
|
|
|
Euro2020_df_final.to_parquet('Euro2020.parquet', index = False) |