Euniceyeee commited on
Commit
7f04f33
1 Parent(s): 1e72e6b

Upload ini_pro.ipynb

Browse files
Files changed (1) hide show
  1. ini_pro.ipynb +165 -0
ini_pro.ipynb ADDED
@@ -0,0 +1,165 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "cells": [
3
+ {
4
+ "cell_type": "code",
5
+ "execution_count": 1,
6
+ "metadata": {},
7
+ "outputs": [],
8
+ "source": [
9
+ "import numpy as np\n",
10
+ "import os\n",
11
+ "import shutil\n",
12
+ "from sklearn.model_selection import train_test_split\n",
13
+ "import pandas as pd\n",
14
+ "import json "
15
+ ]
16
+ },
17
+ {
18
+ "cell_type": "markdown",
19
+ "metadata": {},
20
+ "source": [
21
+ "Create train-test folder"
22
+ ]
23
+ },
24
+ {
25
+ "cell_type": "code",
26
+ "execution_count": 3,
27
+ "metadata": {},
28
+ "outputs": [],
29
+ "source": [
30
+ "base_path = 'kidney-ct-abnormality'\n",
31
+ "images_path = os.path.join(base_path, 'imagesTr')\n",
32
+ "all_images = [f for f in os.listdir(images_path) if f.endswith('.mha')]\n",
33
+ "train_files, test_files = train_test_split(all_images, test_size=0.2, random_state=219)"
34
+ ]
35
+ },
36
+ {
37
+ "cell_type": "code",
38
+ "execution_count": 4,
39
+ "metadata": {},
40
+ "outputs": [],
41
+ "source": [
42
+ "train_dir = os.path.join(base_path, 'train')\n",
43
+ "test_dir = os.path.join(base_path, 'test')\n",
44
+ "os.makedirs(train_dir, exist_ok=True)\n",
45
+ "os.makedirs(test_dir, exist_ok=True)"
46
+ ]
47
+ },
48
+ {
49
+ "cell_type": "code",
50
+ "execution_count": 5,
51
+ "metadata": {},
52
+ "outputs": [],
53
+ "source": [
54
+ "def move_files(files, destination):\n",
55
+ " for f in files:\n",
56
+ " shutil.move(os.path.join(images_path, f), os.path.join(destination, f))"
57
+ ]
58
+ },
59
+ {
60
+ "cell_type": "code",
61
+ "execution_count": 6,
62
+ "metadata": {},
63
+ "outputs": [],
64
+ "source": [
65
+ "move_files(train_files, train_dir)\n",
66
+ "move_files(test_files, test_dir)"
67
+ ]
68
+ },
69
+ {
70
+ "cell_type": "markdown",
71
+ "metadata": {},
72
+ "source": [
73
+ "Modify the json file"
74
+ ]
75
+ },
76
+ {
77
+ "cell_type": "code",
78
+ "execution_count": 2,
79
+ "metadata": {},
80
+ "outputs": [],
81
+ "source": [
82
+ "json_file_path = 'dataset.json' \n",
83
+ "with open(json_file_path, 'r') as file:\n",
84
+ " img_label = json.load(file)"
85
+ ]
86
+ },
87
+ {
88
+ "cell_type": "code",
89
+ "execution_count": 3,
90
+ "metadata": {},
91
+ "outputs": [],
92
+ "source": [
93
+ "data = img_label['training']\n",
94
+ "df = pd.DataFrame(data)\n",
95
+ "df.rename(columns={'Abnormality': 'abnormality'}, inplace=True)\n",
96
+ "df['image'] = df['image'].apply(lambda x: x[11:-4]+'_0000'+x[-4:])\n",
97
+ "test_images = [f for f in os.listdir('test') if f.endswith('.mha')]\n",
98
+ "df['split'] = df['image'].apply(lambda x: 'test' if x in test_images else 'train')\n",
99
+ "# df"
100
+ ]
101
+ },
102
+ {
103
+ "cell_type": "code",
104
+ "execution_count": 5,
105
+ "metadata": {},
106
+ "outputs": [],
107
+ "source": [
108
+ "# df_copy = df.copy()\n",
109
+ "# df_copy['count']=1\n",
110
+ "# df_copy.groupby(['split', 'abnormality']).sum()"
111
+ ]
112
+ },
113
+ {
114
+ "cell_type": "code",
115
+ "execution_count": 4,
116
+ "metadata": {},
117
+ "outputs": [],
118
+ "source": [
119
+ "list_of_dicts = df.to_dict(orient='records')\n",
120
+ "# list_of_dicts"
121
+ ]
122
+ },
123
+ {
124
+ "cell_type": "code",
125
+ "execution_count": 23,
126
+ "metadata": {},
127
+ "outputs": [],
128
+ "source": [
129
+ "df.to_json('dataset_m.json', orient='records', lines=True)"
130
+ ]
131
+ },
132
+ {
133
+ "cell_type": "code",
134
+ "execution_count": null,
135
+ "metadata": {},
136
+ "outputs": [],
137
+ "source": []
138
+ }
139
+ ],
140
+ "metadata": {
141
+ "interpreter": {
142
+ "hash": "5dd334af8dc9350ae3498c72a940dd1e233d0cdb387a7b49f9cbba56097a7a15"
143
+ },
144
+ "kernelspec": {
145
+ "display_name": "Python 3.9.7",
146
+ "language": "python",
147
+ "name": "python3"
148
+ },
149
+ "language_info": {
150
+ "codemirror_mode": {
151
+ "name": "ipython",
152
+ "version": 3
153
+ },
154
+ "file_extension": ".py",
155
+ "mimetype": "text/x-python",
156
+ "name": "python",
157
+ "nbconvert_exporter": "python",
158
+ "pygments_lexer": "ipython3",
159
+ "version": "3.9.7"
160
+ },
161
+ "orig_nbformat": 4
162
+ },
163
+ "nbformat": 4,
164
+ "nbformat_minor": 2
165
+ }