|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
"""FEVER dataset.""" |
|
|
|
import json |
|
import os |
|
import textwrap |
|
|
|
import datasets |
|
|
|
|
|
class FeverConfig(datasets.BuilderConfig): |
|
"""BuilderConfig for FEVER.""" |
|
|
|
def __init__(self, homepage: str = None, citation: str = None, base_url: str = None, urls: dict = None, **kwargs): |
|
"""BuilderConfig for FEVER. |
|
|
|
Args: |
|
homepage (`str`): Homepage. |
|
citation (`str`): Citation reference. |
|
base_url (`str`): Data base URL that precedes all data URLs. |
|
urls (`dict`): Data URLs (each URL will pe preceded by `base_url`). |
|
**kwargs: keyword arguments forwarded to super. |
|
""" |
|
super().__init__(**kwargs) |
|
self.homepage = homepage |
|
self.citation = citation |
|
self.base_url = base_url |
|
self.urls = {key: f"{base_url}/{url}" for key, url in urls.items()} |
|
|
|
|
|
class Fever(datasets.GeneratorBasedBuilder): |
|
"""Fact Extraction and VERification Dataset.""" |
|
|
|
BUILDER_CONFIGS = [ |
|
FeverConfig( |
|
name="v1.0", |
|
version=datasets.Version("1.0.0"), |
|
description=textwrap.dedent( |
|
"FEVER v1.0\n" |
|
"FEVER (Fact Extraction and VERification) consists of 185,445 claims generated by altering sentences " |
|
"extracted from Wikipedia and subsequently verified without knowledge of the sentence they were " |
|
"derived from. The claims are classified as Supported, Refuted or NotEnoughInfo. For the first two " |
|
"classes, the annotators also recorded the sentence(s) forming the necessary evidence for their " |
|
"judgment." |
|
), |
|
homepage="https://fever.ai/dataset/fever.html", |
|
citation=textwrap.dedent( |
|
"""\ |
|
@inproceedings{Thorne18Fever, |
|
author = {Thorne, James and Vlachos, Andreas and Christodoulopoulos, Christos and Mittal, Arpit}, |
|
title = {{FEVER}: a Large-scale Dataset for Fact Extraction and {VERification}}, |
|
booktitle = {NAACL-HLT}, |
|
year = {2018} |
|
}""" |
|
), |
|
base_url="https://fever.ai/download/fever", |
|
urls={ |
|
datasets.Split.TRAIN: "train.jsonl", |
|
"dev": "shared_task_dev.jsonl", |
|
"paper_dev": "paper_dev.jsonl", |
|
"paper_test": "paper_test.jsonl", |
|
}, |
|
), |
|
FeverConfig( |
|
name="v2.0", |
|
version=datasets.Version("2.0.0"), |
|
description=textwrap.dedent( |
|
"FEVER v2.0:\n" |
|
"The FEVER 2.0 Dataset consists of 1174 claims created by the submissions of participants in the " |
|
"Breaker phase of the 2019 shared task. Participants (Breakers) were tasked with generating " |
|
"adversarial examples that induce classification errors for the existing systems. Breakers submitted " |
|
"a dataset of up to 1000 instances with equal number of instances for each of the three classes " |
|
"(Supported, Refuted NotEnoughInfo). Only novel claims (i.e. not contained in the original FEVER " |
|
"dataset) were considered as valid entries to the shared task. The submissions were then manually " |
|
"evaluated for Correctness (grammatical, appropriately labeled and meet the FEVER annotation " |
|
"guidelines requirements)." |
|
), |
|
homepage="https://fever.ai/dataset/adversarial.html", |
|
citation=textwrap.dedent( |
|
"""\ |
|
@inproceedings{Thorne19FEVER2, |
|
author = {Thorne, James and Vlachos, Andreas and Cocarascu, Oana and Christodoulopoulos, Christos and Mittal, Arpit}, |
|
title = {The {FEVER2.0} Shared Task}, |
|
booktitle = {Proceedings of the Second Workshop on {Fact Extraction and VERification (FEVER)}}, |
|
year = {2018} |
|
}""" |
|
), |
|
base_url="https://fever.ai/download/fever2.0", |
|
urls={ |
|
datasets.Split.VALIDATION: "fever2-fixers-dev.jsonl", |
|
}, |
|
), |
|
FeverConfig( |
|
name="wiki_pages", |
|
version=datasets.Version("1.0.0"), |
|
description=textwrap.dedent( |
|
"Wikipedia pages for FEVER v1.0:\n" |
|
"FEVER (Fact Extraction and VERification) consists of 185,445 claims generated by altering sentences " |
|
"extracted from Wikipedia and subsequently verified without knowledge of the sentence they were " |
|
"derived from. The claims are classified as Supported, Refuted or NotEnoughInfo. For the first two " |
|
"classes, the annotators also recorded the sentence(s) forming the necessary evidence for their " |
|
"judgment." |
|
), |
|
homepage="https://fever.ai/dataset/fever.html", |
|
citation=textwrap.dedent( |
|
"""\ |
|
@inproceedings{Thorne18Fever, |
|
author = {Thorne, James and Vlachos, Andreas and Christodoulopoulos, Christos and Mittal, Arpit}, |
|
title = {{FEVER}: a Large-scale Dataset for Fact Extraction and {VERification}}, |
|
booktitle = {NAACL-HLT}, |
|
year = {2018} |
|
}""" |
|
), |
|
base_url="https://fever.ai/download/fever", |
|
urls={ |
|
"wikipedia_pages": "wiki-pages.zip", |
|
}, |
|
), |
|
] |
|
|
|
def _info(self): |
|
if self.config.name == "wiki_pages": |
|
features = { |
|
"id": datasets.Value("string"), |
|
"text": datasets.Value("string"), |
|
"lines": datasets.Value("string"), |
|
} |
|
elif self.config.name == "v1.0" or self.config.name == "v2.0": |
|
features = { |
|
"id": datasets.Value("int32"), |
|
"label": datasets.ClassLabel(names=["REFUTES", "SUPPORTS"]), |
|
"claim": datasets.Value("string"), |
|
"evidence_annotation_id": datasets.Value("int32"), |
|
"evidence_id": datasets.Value("int32"), |
|
"evidence_wiki_url": datasets.Value("string"), |
|
"evidence_sentence_id": datasets.Value("int32"), |
|
} |
|
return datasets.DatasetInfo( |
|
description=self.config.description, |
|
features=datasets.Features(features), |
|
homepage=self.config.homepage, |
|
citation=self.config.citation, |
|
) |
|
|
|
def _split_generators(self, dl_manager): |
|
"""Returns SplitGenerators.""" |
|
dl_paths = dl_manager.download_and_extract(self.config.urls) |
|
return [ |
|
datasets.SplitGenerator( |
|
name=split, |
|
gen_kwargs={ |
|
"filepath": dl_paths[split] |
|
if self.config.name != "wiki_pages" |
|
else dl_manager.iter_files(os.path.join(dl_paths[split], "wiki-pages")), |
|
}, |
|
) |
|
for split in dl_paths.keys() |
|
] |
|
|
|
def _generate_examples(self, filepath): |
|
"""Yields examples.""" |
|
if self.config.name == "v1.0" or self.config.name == "v2.0": |
|
with open(filepath, encoding="utf-8") as f: |
|
for row_id, row in enumerate(f): |
|
data = json.loads(row) |
|
id_ = data["id"] |
|
label = data.get("label", "") |
|
|
|
|
|
if label not in ("REFUTES", "SUPPORTS"): |
|
continue |
|
|
|
claim = data["claim"] |
|
evidences = data.get("evidence", []) |
|
if len(evidences) > 0: |
|
for i in range(len(evidences)): |
|
for j in range(len(evidences[i])): |
|
annot_id = evidences[i][j][0] if evidences[i][j][0] else -1 |
|
evidence_id = evidences[i][j][1] if evidences[i][j][1] else -1 |
|
wiki_url = evidences[i][j][2] if evidences[i][j][2] else "" |
|
sent_id = evidences[i][j][3] if evidences[i][j][3] else -1 |
|
yield str(row_id) + "_" + str(i) + "_" + str(j), { |
|
"id": id_, |
|
"label": label, |
|
"claim": claim, |
|
"evidence_annotation_id": annot_id, |
|
"evidence_id": evidence_id, |
|
"evidence_wiki_url": wiki_url, |
|
"evidence_sentence_id": sent_id, |
|
} |
|
else: |
|
yield row_id, { |
|
"id": id_, |
|
"label": label, |
|
"claim": claim, |
|
"evidence_annotation_id": -1, |
|
"evidence_id": -1, |
|
"evidence_wiki_url": "", |
|
"evidence_sentence_id": -1, |
|
} |
|
elif self.config.name == "wiki_pages": |
|
for file_id, file in enumerate(filepath): |
|
with open(file, encoding="utf-8") as f: |
|
for row_id, row in enumerate(f): |
|
data = json.loads(row) |
|
yield f"{file_id}_{row_id}", data |
|
|