hyvoxpopuli / app.py
Edmon02's picture
Upload folder using huggingface_hub
afa3e32 verified
raw
history blame
4.54 kB
from collections import defaultdict
import os
import json
import csv
import datasets
_DESCRIPTION = """
A large-scale multilingual speech corpus for representation learning, semi-supervised learning and interpretation.
"""
_CITATION = """
@inproceedings{wang-etal-2021-voxpopuli,
title = "{V}ox{P}opuli: A Large-Scale Multilingual Speech Corpus for Representation Learning,
Semi-Supervised Learning and Interpretation",
author = "Wang, Changhan and
Riviere, Morgane and
Lee, Ann and
Wu, Anne and
Talnikar, Chaitanya and
Haziza, Daniel and
Williamson, Mary and
Pino, Juan and
Dupoux, Emmanuel",
booktitle = "Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics
and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers)",
month = aug,
year = "2021",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2021.acl-long.80",
doi = "10.18653/v1/2021.acl-long.80",
pages = "993--1003",
}
"""
_HOMEPAGE = "https://github.com/facebookresearch/voxpopuli"
_LICENSE = "CC0, also see https://www.europarl.europa.eu/legal-notice/en/"
_ASR_LANGUAGES = [
"hy"
]
_ASR_ACCENTED_LANGUAGES = [
"en_accented"
]
_LANGUAGES = _ASR_LANGUAGES + _ASR_ACCENTED_LANGUAGES
_BASE_DATA_DIR = "data/"
_N_SHARDS_FILE = _BASE_DATA_DIR + "n_files.json"
_AUDIO_ARCHIVE_PATH = _BASE_DATA_DIR + "{split}/{split}_dataset.tar.gz"
_METADATA_PATH = _BASE_DATA_DIR + "{split}.tsv"
class HySpeech(datasets.GeneratorBasedBuilder):
"""The VoxPopuli dataset."""
VERSION = datasets.Version("1.1.0") # TODO: version
DEFAULT_WRITER_BATCH_SIZE = 256
def _info(self):
features = datasets.Features(
{
"audio_id": datasets.Value("string"),
"language": datasets.ClassLabel(names=_LANGUAGES),
"audio": datasets.Audio(sampling_rate=16_000),
"raw_text": datasets.Value("string"),
"normalized_text": datasets.Value("string"),
"gender": datasets.Value("string"), # TODO: ClassVar?
"speaker_id": datasets.Value("string"),
"is_gold_transcript": datasets.Value("bool"),
"accent": datasets.Value("string"),
}
)
return datasets.DatasetInfo(
description=_DESCRIPTION,
features=features,
homepage=_HOMEPAGE,
license=_LICENSE,
citation=_CITATION,
)
def _split_generators(self, dl_manager):
# Define paths to your train, dev, and test data
data_dir = "data/"
train_data_dir = os.path.join(data_dir, "train")
dev_data_dir = os.path.join(data_dir, "dev")
test_data_dir = os.path.join(data_dir, "test")
# Load metadata files for train, dev, and test
train_metadata_path = os.path.join(data_dir, "train.tsv")
dev_metadata_path = os.path.join(data_dir, "dev.tsv")
test_metadata_path = os.path.join(data_dir, "test.tsv")
# Yield split generators for train, dev, and test
return [
datasets.SplitGenerator(name=datasets.Split.TRAIN, gen_kwargs={"data_dir": train_data_dir, "metadata_path": train_metadata_path}),
datasets.SplitGenerator(name=datasets.Split.VALIDATION, gen_kwargs={"data_dir": dev_data_dir, "metadata_path": dev_metadata_path}),
datasets.SplitGenerator(name=datasets.Split.TEST, gen_kwargs={"data_dir": test_data_dir, "metadata_path": test_metadata_path}),
]
def _generate_examples(self, data_dir, metadata_path):
# Load metadata from TSV file
with open(metadata_path, "r") as f:
metadata = csv.DictReader(f, delimiter="\t")
# Iterate over metadata to yield examples
for row in metadata:
audio_id = row["audio_id"]
audio_path = os.path.join(data_dir, row["audio_path"]) # Adjust column name accordingly
# Load audio file and yield example
with open(audio_path, "rb") as audio_file:
yield audio_id, {
"audio_id": audio_id,
"language": row["language"], # Adjust column name accordingly
"audio": {"path": audio_path, "bytes": audio_file.read()},
# Add other metadata fields as needed
}