File size: 5,036 Bytes
afa3e32
 
 
 
 
 
 
 
 
503db74
afa3e32
 
 
503db74
afa3e32
 
662e94c
afa3e32
662e94c
afa3e32
 
 
 
 
662e94c
afa3e32
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
bfef8de
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
662e94c
bfef8de
 
afa3e32
bfef8de
 
 
 
662e94c
bfef8de
 
 
 
 
 
 
 
 
 
662e94c
bfef8de
 
 
 
 
 
 
 
 
 
662e94c
bfef8de
 
 
 
 
 
afa3e32
 
bfef8de
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
from collections import defaultdict
import os
import json
import csv

import datasets


_DESCRIPTION = """
A large-scale speech corpus for representation learning, semi-supervised learning and interpretation.
"""

_CITATION = """
@inproceedings{}
"""

_HOMEPAGE = ""

_LICENSE = ""

_ASR_LANGUAGES = [
    "hy"
]
_ASR_ACCENTED_LANGUAGES = [
    ""
]

_LANGUAGES = _ASR_LANGUAGES + _ASR_ACCENTED_LANGUAGES

_BASE_DATA_DIR = "data/"

_N_SHARDS_FILE = _BASE_DATA_DIR + "n_files.json"

_AUDIO_ARCHIVE_PATH = _BASE_DATA_DIR + "{split}/{split}_dataset.tar.gz"

_METADATA_PATH = _BASE_DATA_DIR + "{split}.tsv"



class HySpeech(datasets.GeneratorBasedBuilder):
    """The VoxPopuli dataset."""

    VERSION = datasets.Version("1.1.0")  # TODO: version

    DEFAULT_WRITER_BATCH_SIZE = 256

    def _info(self):
        features = datasets.Features(
            {
                "audio_id": datasets.Value("string"),
                "language": datasets.ClassLabel(names=_LANGUAGES),
                "audio": datasets.Audio(sampling_rate=16_000),
                "raw_text": datasets.Value("string"),
                "normalized_text": datasets.Value("string"),
                "gender": datasets.Value("string"),  # TODO: ClassVar?
                "speaker_id": datasets.Value("string"),
                "is_gold_transcript": datasets.Value("bool"),
                "accent": datasets.Value("string"),
            }
        )
        return datasets.DatasetInfo(
            description=_DESCRIPTION,
            features=features,
            homepage=_HOMEPAGE,
            license=_LICENSE,
            citation=_CITATION,
        )

    def _split_generators(self, dl_manager):
        n_shards_path = dl_manager.download_and_extract(_N_SHARDS_FILE)
        with open(n_shards_path) as f:
            n_shards = json.load(f)

        splits = ["train", "dev", "test"]

        audio_urls = defaultdict(dict)
        for split in splits:
            audio_urls[split] = [_AUDIO_ARCHIVE_PATH.format(split=split)]

        meta_urls = defaultdict(dict)
        for split in splits:
            meta_urls[split][lang] = _METADATA_PATH.format(split=split)

        # dl_manager.download_config.num_proc = len(urls)

        meta_paths = dl_manager.download_and_extract(meta_urls)
        audio_paths = dl_manager.download(audio_urls)

        local_extracted_audio_paths = (
            dl_manager.extract(audio_paths)
        )

        return [
            datasets.SplitGenerator(
                name=datasets.Split.TRAIN,
                gen_kwargs={
                    "audio_archives": {
                        'hy': [dl_manager.iter_archive(archive) for archive in lang_archives]
                        for lang_archives in audio_paths["train"].items()
                    },
                    "local_extracted_archives_paths": local_extracted_audio_paths["train"],
                    "metadata_paths": meta_paths["train"],
                }
            ),
            datasets.SplitGenerator(
                name=datasets.Split.VALIDATION,
                gen_kwargs={
                    "audio_archives": {
                        'hy': [dl_manager.iter_archive(archive) for archive in lang_archives]
                        for lang_archives in audio_paths["dev"].items()
                    },
                    "local_extracted_archives_paths": local_extracted_audio_paths["dev"],
                    "metadata_paths": meta_paths["dev"],
                }
            ),
            datasets.SplitGenerator(
                name=datasets.Split.TEST,
                gen_kwargs={
                    "audio_archives": {
                        'hy': [dl_manager.iter_archive(archive) for archive in lang_archives]
                        for lang_archives in audio_paths["test"].items()
                    },
                    "local_extracted_archives_paths": local_extracted_audio_paths["test"],
                    "metadata_paths": meta_paths["test"],
                }
            ),
        ]

    

    def _generate_examples(self, audio_archives, local_extracted_archives_paths, metadata_paths):
        features = ["raw_text", "normalized_text", "speaker_id", "gender", "is_gold_transcript", "accent"]

        meta_path = metadata_paths[lang]
        with open(meta_path) as f:
            metadata = {x["id"]: x for x in csv.DictReader(f, delimiter="\t")}

        for audio_archive, local_extracted_archive_path in zip(audio_archives[lang], local_extracted_archives_paths[lang]):
            for audio_filename, audio_file in audio_archive:
                audio_id = audio_filename.split(os.sep)[-1].split(".wav")[0]
                path = os.path.join(local_extracted_archive_path, audio_filename) if local_extracted_archive_path else audio_filename

                yield audio_id, {
                    "audio_id": audio_id,
                    **{feature: metadata[audio_id][feature] for feature in features},
                    "audio": {"path": path, "bytes": audio_file.read()},
                }