Datasets:
File size: 18,458 Bytes
59171e9 4ed364d 59171e9 a1e6622 59171e9 4ed364d 59171e9 4ed364d 59171e9 4ed364d 59171e9 f2bda57 4ed364d 06354d4 59171e9 4ed364d 59fb3d8 7285026 4ed364d 59fb3d8 4ed364d 59fb3d8 4ed364d 08f5766 59171e9 4ed364d 59171e9 b114e70 674333f 59171e9 4ed364d 59171e9 b114e70 674333f 59171e9 4ed364d 59171e9 b114e70 674333f 59171e9 4ed364d 59171e9 4ed364d ef7da8f 674333f 59171e9 4ed364d 59171e9 674333f 59171e9 4ed364d 59171e9 4ed364d 59171e9 4ed364d 59171e9 94e03fc 1961a1a 4ed364d 94e03fc 59171e9 4ed364d 59171e9 4ed364d 59171e9 4ed364d 59171e9 4ed364d 59171e9 4ed364d 59171e9 4ed364d 49caefd 59171e9 4ed364d 59171e9 4ed364d 59171e9 4ed364d 59171e9 2a46d4a 4ed364d 59171e9 4ed364d 59171e9 4ed364d 59171e9 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 |
# coding=utf-8
# Copyright 2020 The HuggingFace Datasets Authors and the current dataset script contributor.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# template from : https://github.com/huggingface/datasets/blob/master/templates/new_dataset_script.py
from __future__ import absolute_import, division, print_function
import json
import os
import datasets
_BASE_URL = "https://huggingface.co./datasets/EMBO/SourceData/resolve/main/"
class SourceData(datasets.GeneratorBasedBuilder):
"""SourceDataNLP provides datasets to train NLP tasks in cell and molecular biology."""
_NER_LABEL_NAMES = [
"O",
"B-SMALL_MOLECULE",
"I-SMALL_MOLECULE",
"B-GENEPROD",
"I-GENEPROD",
"B-SUBCELLULAR",
"I-SUBCELLULAR",
"B-CELL_TYPE",
"I-CELL_TYPE",
"B-TISSUE",
"I-TISSUE",
"B-ORGANISM",
"I-ORGANISM",
"B-EXP_ASSAY",
"I-EXP_ASSAY",
"B-DISEASE",
"I-DISEASE",
"B-CELL_LINE",
"I-CELL_LINE",
]
_SEMANTIC_ROLES = [
"O",
"B-CONTROLLED_VAR",
"I-CONTROLLED_VAR",
"B-MEASURED_VAR",
"I-MEASURED_VAR",
]
_PANEL_START_NAMES = ["O", "B-PANEL_START", "I-PANEL_START"]
_ROLES_MULTI = ["O", "GENEPROD", "SMALL_MOLECULE"]
_CITATION = """\
@article{abreu2023sourcedata,
title={The SourceData-NLP dataset: integrating curation into scientific publishing
for training large language models},
author={Abreu-Vicente, Jorge and Sonntag, Hannah and Eidens, Thomas and Lemberger, Thomas},
journal={arXiv preprint arXiv:2310.20440},
year={2023}
}
"""
_DESCRIPTION = """\
This dataset is based on the SourceData database and is intented to facilitate training of NLP tasks in the cell and molecualr biology domain.
"""
_HOMEPAGE = "https://huggingface.co./datasets/EMBO/SourceData"
_LICENSE = "CC-BY 4.0"
DEFAULT_CONFIG_NAME = "NER"
_LATEST_VERSION = "2.0.3" # Should this be updated to 2.0.3
def _info(self):
VERSION = (
self.config.version
if self.config.version not in ["0.0.0", "latest"]
else self._LATEST_VERSION
)
self._URLS = {
"NER": f"{_BASE_URL}token_classification/v_{VERSION}/ner/",
"PANELIZATION": f"{_BASE_URL}token_classification/v_{VERSION}/panelization/",
"ROLES_GP": f"{_BASE_URL}token_classification/v_{VERSION}/roles_gene/",
"ROLES_SM": f"{_BASE_URL}token_classification/v_{VERSION}/roles_small_mol/",
"ROLES_MULTI": f"{_BASE_URL}token_classification/v_{VERSION}/roles_multi/",
"FULL": os.path.join(
_BASE_URL,
"bigbio",
# f"v_{VERSION}",
),
}
self.BUILDER_CONFIGS = [
datasets.BuilderConfig(
name="NER",
version=VERSION,
description="Dataset for named-entity recognition.",
),
datasets.BuilderConfig(
name="PANELIZATION",
version=VERSION,
description="Dataset to separate figure captions into panels.",
),
datasets.BuilderConfig(
name="ROLES_GP",
version=VERSION,
description="Dataset for semantic roles of gene products.",
),
datasets.BuilderConfig(
name="ROLES_SM",
version=VERSION,
description="Dataset for semantic roles of small molecules.",
),
datasets.BuilderConfig(
name="ROLES_MULTI",
version=VERSION,
description="Dataset to train roles. ROLES_GP and ROLES_SM at once.",
),
datasets.BuilderConfig(
name="FULL",
version=VERSION,
description="Full dataset including all NER + entity linking annotations, links to figure images, etc.",
),
# datasets.BuilderConfig(
# name="BIGBIO_KB",
# version=VERSION,
# description="Full dataset formatted according to BigBio KB schema (see https://huggingface.co./bigbio). Includes all NER + entity linking annotations.",
# ),
]
if self.config.name in ["NER", "default"]:
features = datasets.Features(
{
"words": datasets.Sequence(feature=datasets.Value("string")),
"labels": datasets.Sequence(
feature=datasets.ClassLabel(
num_classes=len(self._NER_LABEL_NAMES),
names=self._NER_LABEL_NAMES,
)
),
# "is_category": datasets.Sequence(feature=datasets.Value("int8")),
"tag_mask": datasets.Sequence(feature=datasets.Value("int8")),
"text": datasets.Value("string"),
}
)
elif self.config.name == "ROLES_GP":
features = datasets.Features(
{
"words": datasets.Sequence(feature=datasets.Value("string")),
"labels": datasets.Sequence(
feature=datasets.ClassLabel(
num_classes=len(self._SEMANTIC_ROLES),
names=self._SEMANTIC_ROLES,
)
),
# "is_category": datasets.Sequence(feature=datasets.Value("int8")),
"tag_mask": datasets.Sequence(feature=datasets.Value("int8")),
"text": datasets.Value("string"),
}
)
elif self.config.name == "ROLES_SM":
features = datasets.Features(
{
"words": datasets.Sequence(feature=datasets.Value("string")),
"labels": datasets.Sequence(
feature=datasets.ClassLabel(
num_classes=len(self._SEMANTIC_ROLES),
names=self._SEMANTIC_ROLES,
)
),
# "is_category": datasets.Sequence(feature=datasets.Value("int8")),
"tag_mask": datasets.Sequence(feature=datasets.Value("int8")),
"text": datasets.Value("string"),
}
)
elif self.config.name == "ROLES_MULTI":
features = datasets.Features(
{
"words": datasets.Sequence(feature=datasets.Value("string")),
"labels": datasets.Sequence(
feature=datasets.ClassLabel(
num_classes=len(self._SEMANTIC_ROLES),
names=self._SEMANTIC_ROLES,
)
),
"is_category": datasets.Sequence(
feature=datasets.ClassLabel(
num_classes=len(self._ROLES_MULTI), names=self._ROLES_MULTI
)
),
"tag_mask": datasets.Sequence(feature=datasets.Value("int8")),
"text": datasets.Value("string"),
}
)
elif self.config.name == "PANELIZATION":
features = datasets.Features(
{
"words": datasets.Sequence(feature=datasets.Value("string")),
"labels": datasets.Sequence(
feature=datasets.ClassLabel(
num_classes=len(self._PANEL_START_NAMES),
names=self._PANEL_START_NAMES,
)
),
"tag_mask": datasets.Sequence(feature=datasets.Value("int8")),
}
)
elif self.config.name == "FULL":
features = datasets.Features(
{
"doi": datasets.Value("string"),
"abstract": datasets.Value("string"),
# "split": datasets.Value("string"),
"figures": [
{
"fig_id": datasets.Value("string"),
"label": datasets.Value("string"),
"fig_graphic_url": datasets.Value("string"),
"panels": [
{
"panel_id": datasets.Value("string"),
"text": datasets.Value("string"),
"panel_graphic_url": datasets.Value("string"),
"entities": [
{
"annotation_id": datasets.Value("string"),
"source": datasets.Value("string"),
"category": datasets.Value("string"),
"entity_type": datasets.Value("string"),
"role": datasets.Value("string"),
"text": datasets.Value("string"),
"ext_ids": datasets.Value("string"),
"norm_text": datasets.Value("string"),
"ext_dbs": datasets.Value("string"),
"in_caption": datasets.Value("bool"),
"ext_names": datasets.Value("string"),
"ext_tax_ids": datasets.Value("string"),
"ext_tax_names": datasets.Value("string"),
"ext_urls": datasets.Value("string"),
"offsets": [datasets.Value("int64")],
}
],
}
],
}
],
}
)
return datasets.DatasetInfo(
description=self._DESCRIPTION,
features=features,
supervised_keys=("words", "label_ids"),
homepage=self._HOMEPAGE,
license=self._LICENSE,
citation=self._CITATION,
)
def _split_generators(self, dl_manager: datasets.DownloadManager):
"""Returns SplitGenerators.
Uses local files if a data_dir is specified. Otherwise downloads the files from their official url.
"""
try:
config_name = self.config.name if self.config.name != "default" else "NER"
if config_name == "FULL":
url = os.path.join(
self._URLS[config_name],
# "source_data_full.zip"
"source_data_json_splits_2.0.2.zip",
)
data_dir = dl_manager.download_and_extract(url)
data_files = [
os.path.join(data_dir, filename)
for filename in ["train.jsonl", "test.jsonl", "validation.jsonl"]
]
else:
urls = [
os.path.join(self._URLS[config_name], "train.jsonl"),
os.path.join(self._URLS[config_name], "test.jsonl"),
os.path.join(self._URLS[config_name], "validation.jsonl"),
]
data_files = dl_manager.download(urls)
except:
raise ValueError(f"unkonwn config name: {self.config.name}")
return [
datasets.SplitGenerator(
name=datasets.Split.TRAIN,
# These kwargs will be passed to _generate_examples
gen_kwargs={"filepath": data_files[0]},
),
datasets.SplitGenerator(
name=datasets.Split.TEST,
gen_kwargs={"filepath": data_files[1]},
),
datasets.SplitGenerator(
name=datasets.Split.VALIDATION,
gen_kwargs={"filepath": data_files[2]},
),
]
def _generate_examples(self, filepath):
"""Yields examples. This method will receive as arguments the `gen_kwargs` defined in the previous `_split_generators` method.
It is in charge of opening the given file and yielding (key, example) tuples from the dataset
The key is not important, it's more here for legacy reason (legacy from tfds)"""
no_panels = 0
no_entities = 0
has_panels = 0
has_entities = 0
with open(filepath, encoding="utf-8") as f:
# logger.info("⏳ Generating examples from = %s", filepath)
for id_, row in enumerate(f):
data = json.loads(row.strip())
if self.config.name in ["NER", "default"]:
yield id_, {
"words": data["words"],
"labels": data["labels"],
"tag_mask": data["is_category"],
"text": data["text"],
}
elif self.config.name == "ROLES_GP":
yield id_, {
"words": data["words"],
"labels": data["labels"],
"tag_mask": data["is_category"],
"text": data["text"],
}
elif self.config.name == "ROLES_MULTI":
labels = data["labels"]
tag_mask = [1 if t != 0 else 0 for t in labels]
yield id_, {
"words": data["words"],
"labels": data["labels"],
"tag_mask": tag_mask,
"is_category": data["is_category"],
"text": data["text"],
}
elif self.config.name == "ROLES_SM":
yield id_, {
"words": data["words"],
"labels": data["labels"],
"tag_mask": data["is_category"],
"text": data["text"],
}
elif self.config.name == "PANELIZATION":
labels = data["labels"]
tag_mask = [1 if t == "B-PANEL_START" else 0 for t in labels]
yield id_, {
"words": data["words"],
"labels": data["labels"],
"tag_mask": tag_mask,
}
elif self.config.name == "FULL":
doc_figs = data["figures"]
all_figures = []
for fig in doc_figs:
all_panels = []
figure = {
"fig_id": fig["fig_id"],
"label": fig["label"],
"fig_graphic_url": fig["fig_graphic_url"],
}
for p in fig["panels"]:
panel = {
"panel_id": p["panel_id"],
"text": p["text"].strip(),
"panel_graphic_url": p["panel_graphic_url"],
"entities": [
{
"annotation_id": t["tag_id"],
"source": t["source"],
"category": t["category"],
"entity_type": t["entity_type"],
"role": t["role"],
"text": t["text"],
"ext_ids": t["ext_ids"],
"norm_text": t["norm_text"],
"ext_dbs": t["ext_dbs"],
"in_caption": bool(t["in_caption"]),
"ext_names": t["ext_names"],
"ext_tax_ids": t["ext_tax_ids"],
"ext_tax_names": t["ext_tax_names"],
"ext_urls": t["ext_urls"],
"offsets": t["local_offsets"],
}
for t in p["tags"]
],
}
for e in panel["entities"]:
assert type(e["offsets"]) == list
if len(panel["entities"]) == 0:
no_entities += 1
continue
else:
has_entities += 1
all_panels.append(panel)
figure["panels"] = all_panels
# Pass on all figures that aren't split into panels
if len(all_panels) == 0:
no_panels += 1
continue
else:
has_panels += 1
all_figures.append(figure)
output = {
"doi": data["doi"],
"abstract": data["abstract"],
"figures": all_figures,
}
yield id_, output
|