ArneBinder commited on
Commit
3f5d38f
·
1 Parent(s): 492fb3d

Upload sciarg.py

Browse files
Files changed (1) hide show
  1. sciarg.py +368 -0
sciarg.py ADDED
@@ -0,0 +1,368 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import glob
2
+ from dataclasses import dataclass
3
+ from typing import Dict, List
4
+ from pathlib import Path
5
+
6
+ import datasets
7
+
8
+
9
+ def remove_prefix(a: str, prefix: str) -> str:
10
+ if a.startswith(prefix):
11
+ a = a[len(prefix) :]
12
+ return a
13
+
14
+
15
+ def parse_brat_file(
16
+ txt_file: Path,
17
+ annotation_file_suffixes: List[str] = None,
18
+ parse_notes: bool = False,
19
+ ) -> Dict:
20
+ """
21
+ Parse a brat file into the schema defined below.
22
+ `txt_file` should be the path to the brat '.txt' file you want to parse, e.g. 'data/1234.txt'
23
+ Assumes that the annotations are contained in one or more of the corresponding '.a1', '.a2' or '.ann' files,
24
+ e.g. 'data/1234.ann' or 'data/1234.a1' and 'data/1234.a2'.
25
+ Will include annotator notes, when `parse_notes == True`.
26
+ brat_features = datasets.Features(
27
+ {
28
+ "id": datasets.Value("string"),
29
+ "document_id": datasets.Value("string"),
30
+ "text": datasets.Value("string"),
31
+ "text_bound_annotations": [ # T line in brat, e.g. type or event trigger
32
+ {
33
+ "offsets": datasets.Sequence([datasets.Value("int32")]),
34
+ "text": datasets.Sequence(datasets.Value("string")),
35
+ "type": datasets.Value("string"),
36
+ "id": datasets.Value("string"),
37
+ }
38
+ ],
39
+ "events": [ # E line in brat
40
+ {
41
+ "trigger": datasets.Value(
42
+ "string"
43
+ ), # refers to the text_bound_annotation of the trigger,
44
+ "id": datasets.Value("string"),
45
+ "type": datasets.Value("string"),
46
+ "arguments": datasets.Sequence(
47
+ {
48
+ "role": datasets.Value("string"),
49
+ "ref_id": datasets.Value("string"),
50
+ }
51
+ ),
52
+ }
53
+ ],
54
+ "relations": [ # R line in brat
55
+ {
56
+ "id": datasets.Value("string"),
57
+ "head": {
58
+ "ref_id": datasets.Value("string"),
59
+ "role": datasets.Value("string"),
60
+ },
61
+ "tail": {
62
+ "ref_id": datasets.Value("string"),
63
+ "role": datasets.Value("string"),
64
+ },
65
+ "type": datasets.Value("string"),
66
+ }
67
+ ],
68
+ "equivalences": [ # Equiv line in brat
69
+ {
70
+ "id": datasets.Value("string"),
71
+ "ref_ids": datasets.Sequence(datasets.Value("string")),
72
+ }
73
+ ],
74
+ "attributes": [ # M or A lines in brat
75
+ {
76
+ "id": datasets.Value("string"),
77
+ "type": datasets.Value("string"),
78
+ "ref_id": datasets.Value("string"),
79
+ "value": datasets.Value("string"),
80
+ }
81
+ ],
82
+ "normalizations": [ # N lines in brat
83
+ {
84
+ "id": datasets.Value("string"),
85
+ "type": datasets.Value("string"),
86
+ "ref_id": datasets.Value("string"),
87
+ "resource_name": datasets.Value(
88
+ "string"
89
+ ), # Name of the resource, e.g. "Wikipedia"
90
+ "cuid": datasets.Value(
91
+ "string"
92
+ ), # ID in the resource, e.g. 534366
93
+ "text": datasets.Value(
94
+ "string"
95
+ ), # Human readable description/name of the entity, e.g. "Barack Obama"
96
+ }
97
+ ],
98
+ ### OPTIONAL: Only included when `parse_notes == True`
99
+ "notes": [ # # lines in brat
100
+ {
101
+ "id": datasets.Value("string"),
102
+ "type": datasets.Value("string"),
103
+ "ref_id": datasets.Value("string"),
104
+ "text": datasets.Value("string"),
105
+ }
106
+ ],
107
+ },
108
+ )
109
+ """
110
+
111
+ example = {}
112
+ example["document_id"] = txt_file.with_suffix("").name
113
+ with txt_file.open() as f:
114
+ example["text"] = f.read()
115
+
116
+ # If no specific suffixes of the to-be-read annotation files are given - take standard suffixes
117
+ # for event extraction
118
+ if annotation_file_suffixes is None:
119
+ annotation_file_suffixes = [".a1", ".a2", ".ann"]
120
+
121
+ if len(annotation_file_suffixes) == 0:
122
+ raise AssertionError(
123
+ "At least one suffix for the to-be-read annotation files should be given!"
124
+ )
125
+
126
+ ann_lines = []
127
+ for suffix in annotation_file_suffixes:
128
+ annotation_file = txt_file.with_suffix(suffix)
129
+ if annotation_file.exists():
130
+ with annotation_file.open() as f:
131
+ ann_lines.extend(f.readlines())
132
+
133
+ example["text_bound_annotations"] = []
134
+ example["events"] = []
135
+ example["relations"] = []
136
+ example["equivalences"] = []
137
+ example["attributes"] = []
138
+ example["normalizations"] = []
139
+
140
+ if parse_notes:
141
+ example["notes"] = []
142
+
143
+ for line in ann_lines:
144
+ line = line.strip()
145
+ if not line:
146
+ continue
147
+
148
+ if line.startswith("T"): # Text bound
149
+ ann = {}
150
+ fields = line.split("\t")
151
+
152
+ ann["id"] = fields[0]
153
+ ann["type"] = fields[1].split()[0]
154
+ ann["offsets"] = []
155
+ span_str = remove_prefix(fields[1], (ann["type"] + " "))
156
+ text = fields[2]
157
+ for span in span_str.split(";"):
158
+ start, end = span.split()
159
+ ann["offsets"].append([int(start), int(end)])
160
+
161
+ # Heuristically split text of discontiguous entities into chunks
162
+ ann["text"] = []
163
+ if len(ann["offsets"]) > 1:
164
+ i = 0
165
+ for start, end in ann["offsets"]:
166
+ chunk_len = end - start
167
+ ann["text"].append(text[i : chunk_len + i])
168
+ i += chunk_len
169
+ while i < len(text) and text[i] == " ":
170
+ i += 1
171
+ else:
172
+ ann["text"] = [text]
173
+
174
+ example["text_bound_annotations"].append(ann)
175
+
176
+ elif line.startswith("E"):
177
+ ann = {}
178
+ fields = line.split("\t")
179
+
180
+ ann["id"] = fields[0]
181
+
182
+ ann["type"], ann["trigger"] = fields[1].split()[0].split(":")
183
+
184
+ ann["arguments"] = []
185
+ for role_ref_id in fields[1].split()[1:]:
186
+ argument = {
187
+ "role": (role_ref_id.split(":"))[0],
188
+ "ref_id": (role_ref_id.split(":"))[1],
189
+ }
190
+ ann["arguments"].append(argument)
191
+
192
+ example["events"].append(ann)
193
+
194
+ elif line.startswith("R"):
195
+ ann = {}
196
+ fields = line.split("\t")
197
+
198
+ ann["id"] = fields[0]
199
+ ann["type"] = fields[1].split()[0]
200
+
201
+ ann["head"] = {
202
+ "role": fields[1].split()[1].split(":")[0],
203
+ "ref_id": fields[1].split()[1].split(":")[1],
204
+ }
205
+ ann["tail"] = {
206
+ "role": fields[1].split()[2].split(":")[0],
207
+ "ref_id": fields[1].split()[2].split(":")[1],
208
+ }
209
+
210
+ example["relations"].append(ann)
211
+
212
+ # '*' seems to be the legacy way to mark equivalences,
213
+ # but I couldn't find any info on the current way
214
+ # this might have to be adapted dependent on the brat version
215
+ # of the annotation
216
+ elif line.startswith("*"):
217
+ ann = {}
218
+ fields = line.split("\t")
219
+
220
+ ann["id"] = fields[0]
221
+ ann["ref_ids"] = fields[1].split()[1:]
222
+
223
+ example["equivalences"].append(ann)
224
+
225
+ elif line.startswith("A") or line.startswith("M"):
226
+ ann = {}
227
+ fields = line.split("\t")
228
+
229
+ ann["id"] = fields[0]
230
+
231
+ info = fields[1].split()
232
+ ann["type"] = info[0]
233
+ ann["ref_id"] = info[1]
234
+
235
+ if len(info) > 2:
236
+ ann["value"] = info[2]
237
+ else:
238
+ ann["value"] = ""
239
+
240
+ example["attributes"].append(ann)
241
+
242
+ elif line.startswith("N"):
243
+ ann = {}
244
+ fields = line.split("\t")
245
+
246
+ ann["id"] = fields[0]
247
+ ann["text"] = fields[2]
248
+
249
+ info = fields[1].split()
250
+
251
+ ann["type"] = info[0]
252
+ ann["ref_id"] = info[1]
253
+ ann["resource_name"] = info[2].split(":")[0]
254
+ ann["cuid"] = info[2].split(":")[1]
255
+ example["normalizations"].append(ann)
256
+
257
+ elif parse_notes and line.startswith("#"):
258
+ ann = {}
259
+ fields = line.split("\t")
260
+
261
+ ann["id"] = fields[0]
262
+ ann["text"] = fields[2] if len(fields) == 3 else None
263
+
264
+ info = fields[1].split()
265
+
266
+ ann["type"] = info[0]
267
+ ann["ref_id"] = info[1]
268
+ example["notes"].append(ann)
269
+
270
+ return example
271
+
272
+
273
+ _CITATION = """\
274
+ @inproceedings{lauscher2018b,
275
+ title = {An argument-annotated corpus of scientific publications},
276
+ booktitle = {Proceedings of the 5th Workshop on Mining Argumentation},
277
+ publisher = {Association for Computational Linguistics},
278
+ author = {Lauscher, Anne and Glava\v{s}, Goran and Ponzetto, Simone Paolo},
279
+ address = {Brussels, Belgium},
280
+ year = {2018},
281
+ pages = {40–46}
282
+ }
283
+ """
284
+ _DESCRIPTION = """\
285
+ The SciArg dataset is an extension of the Dr. Inventor corpus (Fisas et al., 2015, 2016) with an annotation layer containing
286
+ fine-grained argumentative components and relations. It is the first argument-annotated corpus of scientific
287
+ publications (in English), which allows for joint analyses of argumentation and other rhetorical dimensions of
288
+ scientific writing.
289
+ """
290
+ _URL = "http://data.dws.informatik.uni-mannheim.de/sci-arg/compiled_corpus.zip"
291
+ _HOMEPAGE = "https://github.com/anlausch/ArguminSci"
292
+
293
+
294
+ @dataclass
295
+ class SciArgConfig(datasets.BuilderConfig):
296
+ data_url = _URL
297
+ subdirectory_mapping = {"compiled_corpus": datasets.Split.TRAIN}
298
+ filename_blacklist = [] #["A28"]
299
+
300
+
301
+ class SciArg(datasets.GeneratorBasedBuilder):
302
+ """Scientific Argument corpus"""
303
+
304
+ DEFAULT_CONFIG_CLASS = SciArgConfig
305
+
306
+ BUILDER_CONFIGS = [
307
+ SciArgConfig(
308
+ name="full",
309
+ version="1.0.0",
310
+ ),
311
+ ]
312
+
313
+ DEFAULT_CONFIG_NAME = "full"
314
+
315
+ def _info(self) -> datasets.DatasetInfo:
316
+ features = datasets.Features(
317
+ {
318
+ "document_id": datasets.Value("string"),
319
+ "text": datasets.Value("string"),
320
+ "text_bound_annotations": [
321
+ {
322
+ "offsets": datasets.Sequence([datasets.Value("int32")]),
323
+ "text": datasets.Value("string"),
324
+ "type": datasets.Value("string"),
325
+ "id": datasets.Value("string"),
326
+ }
327
+ ],
328
+ "relations": [
329
+ {
330
+ "id": datasets.Value("string"),
331
+ "head": {
332
+ "ref_id": datasets.Value("string"),
333
+ "role": datasets.Value("string"),
334
+ },
335
+ "tail": {
336
+ "ref_id": datasets.Value("string"),
337
+ "role": datasets.Value("string"),
338
+ },
339
+ "type": datasets.Value("string"),
340
+ }
341
+ ],
342
+ }
343
+ )
344
+
345
+ return datasets.DatasetInfo(
346
+ description=_DESCRIPTION,
347
+ features=features,
348
+ homepage=_HOMEPAGE,
349
+ citation=_CITATION,
350
+ )
351
+
352
+ def _split_generators(self, dl_manager) -> List[datasets.SplitGenerator]:
353
+ """Returns SplitGenerators."""
354
+ data_dir = self.config.data_dir or Path(dl_manager.download_and_extract(self.config.data_url))
355
+
356
+ return [
357
+ datasets.SplitGenerator(name=split, gen_kwargs={"filepath": data_dir / subdir})
358
+ for subdir, split in self.config.subdirectory_mapping.items()
359
+ ]
360
+
361
+ def _generate_examples(self, filepath):
362
+ for txt_file in glob.glob(filepath / "*.txt"):
363
+
364
+ brat_parsed = parse_brat_file(Path(txt_file))
365
+ if brat_parsed["document_id"] in self.config.filename_blacklist:
366
+ continue
367
+ relevant_subset = {f_name: brat_parsed[f_name] for f_name in self.info.features}
368
+ yield brat_parsed["document_id"], relevant_subset