Datasets:
Add configs for entity linking, relation extraction and event extraction (sentence level)
Browse files
mobie.py
CHANGED
@@ -16,6 +16,7 @@
|
|
16 |
MobIE is a German-language dataset which is human-annotated with 20 coarse- and fine-grained entity types and entity linking information for geographically linkable entities. The dataset consists of 3,232 social media texts and traffic reports with 91K tokens, and contains 20.5K annotated entities, 13.1K of which are linked to a knowledge base. A subset of the dataset is human-annotated with seven mobility-related, n-ary relation types, while the remaining documents are annotated using a weakly-supervised labeling approach implemented with the Snorkel framework. The dataset combines annotations for NER, EL and RE, and thus can be used for joint and multi-task learning of these fundamental information extraction tasks."""
|
17 |
|
18 |
import re
|
|
|
19 |
from json import JSONDecodeError, JSONDecoder
|
20 |
|
21 |
import datasets
|
@@ -51,6 +52,30 @@ _URLs = {
|
|
51 |
}
|
52 |
|
53 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
54 |
class Mobie(datasets.GeneratorBasedBuilder):
|
55 |
"""MobIE is a German-language dataset which is human-annotated with 20 coarse- and fine-grained entity types and entity linking information for geographically linkable entities"""
|
56 |
|
@@ -68,63 +93,154 @@ class Mobie(datasets.GeneratorBasedBuilder):
|
|
68 |
# data = datasets.load_dataset('my_dataset', 'first_domain')
|
69 |
# data = datasets.load_dataset('my_dataset', 'second_domain')
|
70 |
BUILDER_CONFIGS = [
|
71 |
-
datasets.BuilderConfig(name="
|
|
|
|
|
|
|
72 |
]
|
|
|
73 |
|
74 |
def _info(self):
|
75 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
76 |
{
|
77 |
"id": datasets.Value("string"),
|
78 |
-
"
|
79 |
-
"
|
80 |
-
|
81 |
-
|
82 |
-
|
83 |
-
|
84 |
-
|
85 |
-
|
86 |
-
|
87 |
-
|
88 |
-
"I-distance",
|
89 |
-
"B-duration",
|
90 |
-
"I-duration",
|
91 |
-
"B-event-cause",
|
92 |
-
"I-event-cause",
|
93 |
-
"B-location",
|
94 |
-
"I-location",
|
95 |
-
"B-location-city",
|
96 |
-
"I-location-city",
|
97 |
-
"B-location-route",
|
98 |
-
"I-location-route",
|
99 |
-
"B-location-stop",
|
100 |
-
"I-location-stop",
|
101 |
-
"B-location-street",
|
102 |
-
"I-location-street",
|
103 |
-
"B-money",
|
104 |
-
"I-money",
|
105 |
-
"B-number",
|
106 |
-
"I-number",
|
107 |
-
"B-organization",
|
108 |
-
"I-organization",
|
109 |
-
"B-organization-company",
|
110 |
-
"I-organization-company",
|
111 |
-
"B-org-position",
|
112 |
-
"I-org-position",
|
113 |
-
"B-percent",
|
114 |
-
"I-percent",
|
115 |
-
"B-person",
|
116 |
-
"I-person",
|
117 |
-
"B-set",
|
118 |
-
"I-set",
|
119 |
-
"B-time",
|
120 |
-
"I-time",
|
121 |
-
"B-trigger",
|
122 |
-
"I-trigger",
|
123 |
-
]
|
124 |
-
)
|
125 |
-
),
|
126 |
}
|
127 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
128 |
|
129 |
return datasets.DatasetInfo(
|
130 |
# This is the description that will appear on the datasets page.
|
@@ -171,41 +287,173 @@ class Mobie(datasets.GeneratorBasedBuilder):
|
|
171 |
def _generate_examples(self, filepath, split):
|
172 |
"""Yields examples."""
|
173 |
|
174 |
-
|
175 |
-
|
176 |
-
|
177 |
-
|
178 |
-
|
179 |
-
|
180 |
-
|
181 |
-
|
182 |
-
|
183 |
-
|
184 |
-
|
185 |
-
|
186 |
-
|
187 |
-
|
188 |
-
|
189 |
-
|
190 |
-
|
191 |
-
|
192 |
-
|
193 |
-
|
194 |
-
|
195 |
-
|
196 |
-
|
197 |
-
entity_starts.append(m["span"]["start"])
|
198 |
-
|
199 |
-
|
200 |
-
|
201 |
-
|
202 |
-
|
203 |
-
|
204 |
-
|
205 |
-
|
206 |
-
yield sid, {
|
207 |
-
"id": sid,
|
208 |
-
"tokens": toks,
|
209 |
-
"ner_tags": lbls,
|
210 |
-
}
|
211 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
16 |
MobIE is a German-language dataset which is human-annotated with 20 coarse- and fine-grained entity types and entity linking information for geographically linkable entities. The dataset consists of 3,232 social media texts and traffic reports with 91K tokens, and contains 20.5K annotated entities, 13.1K of which are linked to a knowledge base. A subset of the dataset is human-annotated with seven mobility-related, n-ary relation types, while the remaining documents are annotated using a weakly-supervised labeling approach implemented with the Snorkel framework. The dataset combines annotations for NER, EL and RE, and thus can be used for joint and multi-task learning of these fundamental information extraction tasks."""
|
17 |
|
18 |
import re
|
19 |
+
import json
|
20 |
from json import JSONDecodeError, JSONDecoder
|
21 |
|
22 |
import datasets
|
|
|
52 |
}
|
53 |
|
54 |
|
55 |
+
def simplify_dict(d, remove_attribute=True):
|
56 |
+
if isinstance(d, dict):
|
57 |
+
new_dict = {}
|
58 |
+
for k, v in d.items():
|
59 |
+
if remove_attribute and k == "attributes":
|
60 |
+
continue
|
61 |
+
if isinstance(v, dict) and len(v) == 1:
|
62 |
+
if "string" in v:
|
63 |
+
new_dict[k] = v["string"]
|
64 |
+
elif "map" in v:
|
65 |
+
new_dict[k] = v["map"]
|
66 |
+
elif "array" in v:
|
67 |
+
new_dict[k] = simplify_dict(v["array"])
|
68 |
+
else:
|
69 |
+
new_dict[k] = simplify_dict(v)
|
70 |
+
else:
|
71 |
+
new_dict[k] = simplify_dict(v)
|
72 |
+
return new_dict
|
73 |
+
elif isinstance(d, list):
|
74 |
+
return [simplify_dict(x) for x in d]
|
75 |
+
else:
|
76 |
+
return d
|
77 |
+
|
78 |
+
|
79 |
class Mobie(datasets.GeneratorBasedBuilder):
|
80 |
"""MobIE is a German-language dataset which is human-annotated with 20 coarse- and fine-grained entity types and entity linking information for geographically linkable entities"""
|
81 |
|
|
|
93 |
# data = datasets.load_dataset('my_dataset', 'first_domain')
|
94 |
# data = datasets.load_dataset('my_dataset', 'second_domain')
|
95 |
BUILDER_CONFIGS = [
|
96 |
+
datasets.BuilderConfig(name="ner", version=VERSION, description="MobIE V1 NER"),
|
97 |
+
datasets.BuilderConfig(name="el", version=VERSION, description="MobIE V1 Entity Linking"),
|
98 |
+
datasets.BuilderConfig(name="re", version=VERSION, description="MobIE V1 Relation Extraction"),
|
99 |
+
datasets.BuilderConfig(name="ee", version=VERSION, description="MobIE V1 Event Extraction"),
|
100 |
]
|
101 |
+
DEFAULT_CONFIG_NAME = "ner"
|
102 |
|
103 |
def _info(self):
|
104 |
+
labels = [
|
105 |
+
"date",
|
106 |
+
"disaster-type",
|
107 |
+
"distance",
|
108 |
+
"duration",
|
109 |
+
"event-cause",
|
110 |
+
"location",
|
111 |
+
"location-city",
|
112 |
+
"location-route",
|
113 |
+
"location-stop",
|
114 |
+
"location-street",
|
115 |
+
"money",
|
116 |
+
"number",
|
117 |
+
"organization",
|
118 |
+
"organization-company",
|
119 |
+
"org-position",
|
120 |
+
"percent",
|
121 |
+
"person",
|
122 |
+
"set",
|
123 |
+
"time",
|
124 |
+
"trigger",
|
125 |
+
]
|
126 |
+
concept_mentions = [
|
127 |
{
|
128 |
"id": datasets.Value("string"),
|
129 |
+
"text": datasets.Value("string"),
|
130 |
+
"start": datasets.Value("int32"),
|
131 |
+
"end": datasets.Value("int32"),
|
132 |
+
"type": datasets.features.ClassLabel(names=labels),
|
133 |
+
"refids": [
|
134 |
+
{
|
135 |
+
"key": datasets.Value("string"),
|
136 |
+
"value": datasets.Value("string")
|
137 |
+
}
|
138 |
+
]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
139 |
}
|
140 |
+
]
|
141 |
+
if self.config.name == "ner":
|
142 |
+
prefixes = ["B", "I"]
|
143 |
+
|
144 |
+
names = ["O"] + [f"{prefix}-{label}" for prefix in prefixes for label in labels]
|
145 |
+
features = datasets.Features(
|
146 |
+
{
|
147 |
+
"id": datasets.Value("string"),
|
148 |
+
"tokens": datasets.Sequence(datasets.Value("string")),
|
149 |
+
"ner_tags": datasets.Sequence(
|
150 |
+
datasets.features.ClassLabel(
|
151 |
+
names=names
|
152 |
+
)
|
153 |
+
),
|
154 |
+
}
|
155 |
+
)
|
156 |
+
elif self.config.name == "el":
|
157 |
+
features = datasets.Features(
|
158 |
+
{
|
159 |
+
"id": datasets.Value("string"),
|
160 |
+
"text": datasets.Value("string"),
|
161 |
+
"concept_mentions": concept_mentions
|
162 |
+
}
|
163 |
+
)
|
164 |
+
elif self.config.name == "re":
|
165 |
+
features = datasets.Features(
|
166 |
+
{
|
167 |
+
"id": datasets.Value("string"),
|
168 |
+
"text": datasets.Value("string"),
|
169 |
+
"concept_mentions": concept_mentions,
|
170 |
+
"relation_mentions": [
|
171 |
+
{
|
172 |
+
"id": datasets.Value("string"),
|
173 |
+
"trigger": {
|
174 |
+
"id": datasets.Value("string"),
|
175 |
+
"text": datasets.Value("string"),
|
176 |
+
"start": datasets.Value("int32"),
|
177 |
+
"end": datasets.Value("int32")
|
178 |
+
},
|
179 |
+
"argument": {
|
180 |
+
"id": datasets.Value("string"),
|
181 |
+
"text": datasets.Value("string"),
|
182 |
+
"start": datasets.Value("int32"),
|
183 |
+
"end": datasets.Value("int32")
|
184 |
+
},
|
185 |
+
"type": datasets.features.ClassLabel(
|
186 |
+
names=[
|
187 |
+
"no_arg", "location", "delay", "direction", "start_loc", "end_loc",
|
188 |
+
"start_date", "end_date", "cause", "jam_length", "route"
|
189 |
+
]
|
190 |
+
),
|
191 |
+
"event_type": datasets.features.ClassLabel(
|
192 |
+
names=[
|
193 |
+
"O", "Accident", "CanceledRoute", "CanceledStop", "Delay", "Obstruction",
|
194 |
+
"RailReplacementService", "TrafficJam"
|
195 |
+
]
|
196 |
+
)
|
197 |
+
}
|
198 |
+
]
|
199 |
+
}
|
200 |
+
)
|
201 |
+
elif self.config.name == "ee":
|
202 |
+
# Inspired by https://github.com/nlpcl-lab/ace2005-preprocessing?tab=readme-ov-file#format
|
203 |
+
features = datasets.Features(
|
204 |
+
{
|
205 |
+
"id": datasets.Value("string"),
|
206 |
+
"text": datasets.Value("string"),
|
207 |
+
"entity_mentions": concept_mentions,
|
208 |
+
"event_mentions": [
|
209 |
+
{
|
210 |
+
"id": datasets.Value("string"),
|
211 |
+
"trigger": {
|
212 |
+
"id": datasets.Value("string"),
|
213 |
+
"text": datasets.Value("string"),
|
214 |
+
"start": datasets.Value("int32"),
|
215 |
+
"end": datasets.Value("int32"),
|
216 |
+
},
|
217 |
+
"arguments": [{
|
218 |
+
"id": datasets.Value("string"),
|
219 |
+
"text": datasets.Value("string"),
|
220 |
+
"start": datasets.Value("int32"),
|
221 |
+
"end": datasets.Value("int32"),
|
222 |
+
"role": datasets.features.ClassLabel(
|
223 |
+
names=[
|
224 |
+
"no_arg", "location", "delay", "direction", "start_loc", "end_loc",
|
225 |
+
"start_date", "end_date", "cause", "jam_length", "route"
|
226 |
+
]
|
227 |
+
),
|
228 |
+
"type": datasets.features.ClassLabel(
|
229 |
+
names=labels
|
230 |
+
)
|
231 |
+
}],
|
232 |
+
"event_type": datasets.features.ClassLabel(
|
233 |
+
names=[
|
234 |
+
"O", "Accident", "CanceledRoute", "CanceledStop", "Delay", "Obstruction",
|
235 |
+
"RailReplacementService", "TrafficJam"
|
236 |
+
]
|
237 |
+
),
|
238 |
+
}
|
239 |
+
]
|
240 |
+
}
|
241 |
+
)
|
242 |
+
else:
|
243 |
+
raise ValueError("Invalid configuration name")
|
244 |
|
245 |
return datasets.DatasetInfo(
|
246 |
# This is the description that will appear on the datasets page.
|
|
|
287 |
def _generate_examples(self, filepath, split):
|
288 |
"""Yields examples."""
|
289 |
|
290 |
+
if self.config.name == "ner":
|
291 |
+
NOT_WHITESPACE = re.compile(r"[^\s]")
|
292 |
+
|
293 |
+
def decode_stacked(document, pos=0, decoder=JSONDecoder()):
|
294 |
+
while True:
|
295 |
+
match = NOT_WHITESPACE.search(document, pos)
|
296 |
+
if not match:
|
297 |
+
return
|
298 |
+
pos = match.start()
|
299 |
+
try:
|
300 |
+
obj, pos = decoder.raw_decode(document, pos)
|
301 |
+
except JSONDecodeError:
|
302 |
+
raise
|
303 |
+
yield obj
|
304 |
+
|
305 |
+
with open(filepath, encoding="utf-8") as f:
|
306 |
+
raw = f.read()
|
307 |
+
|
308 |
+
for doc in decode_stacked(raw):
|
309 |
+
text = doc["text"]["string"]
|
310 |
+
|
311 |
+
# entity_starts = []
|
312 |
+
# for m in doc["conceptMentions"]["array"]:
|
313 |
+
# entity_starts.append(m["span"]["start"])
|
314 |
+
for s in doc["sentences"]["array"]:
|
315 |
+
toks = []
|
316 |
+
lbls = []
|
317 |
+
sid = s["id"]
|
318 |
+
for x in s["tokens"]["array"]:
|
319 |
+
toks.append(text[x["span"]["start"]: x["span"]["end"]])
|
320 |
+
lbls.append(x["ner"]["string"])
|
|
|
|
|
|
|
|
|
|
|
|
|
321 |
|
322 |
+
yield sid, {
|
323 |
+
"id": sid,
|
324 |
+
"tokens": toks,
|
325 |
+
"ner_tags": lbls,
|
326 |
+
}
|
327 |
+
else:
|
328 |
+
example_idx = 0
|
329 |
+
with open(filepath, encoding="utf-8") as f:
|
330 |
+
for line in f:
|
331 |
+
doc = json.loads(line)
|
332 |
+
doc = simplify_dict(doc)
|
333 |
+
text = doc["text"]
|
334 |
+
for sentence in doc["sentences"]:
|
335 |
+
sentence_id = sentence["id"]
|
336 |
+
sentence_start = sentence["span"]["start"]
|
337 |
+
mobie_cms = sentence["conceptMentions"]
|
338 |
+
concept_mentions = []
|
339 |
+
for cm in mobie_cms:
|
340 |
+
cm_start = cm["span"]["start"]
|
341 |
+
cm_end = cm["span"]["end"]
|
342 |
+
cm_text = text[cm_start:cm_end]
|
343 |
+
concept_mentions.append({
|
344 |
+
"id": cm["id"],
|
345 |
+
"text": cm_text,
|
346 |
+
"start": cm_start - sentence_start,
|
347 |
+
"end": cm_end - sentence_start,
|
348 |
+
"type": cm["type"],
|
349 |
+
"refids": [
|
350 |
+
{
|
351 |
+
"key": refid["key"],
|
352 |
+
"value": refid["value"]
|
353 |
+
} for refid in cm["refids"]
|
354 |
+
] if "refids" in cm and cm["refids"] else []
|
355 |
+
})
|
356 |
+
if self.config.name == "el":
|
357 |
+
yield sentence_id, {
|
358 |
+
"id": sentence_id,
|
359 |
+
"text": text,
|
360 |
+
"concept_mentions": concept_mentions
|
361 |
+
}
|
362 |
+
elif self.config.name == "re":
|
363 |
+
mobie_rms = sentence["relationMentions"]
|
364 |
+
if not mobie_rms:
|
365 |
+
continue
|
366 |
+
relation_mentions = []
|
367 |
+
for rm in mobie_rms:
|
368 |
+
# Find trigger in rm["args"]
|
369 |
+
trigger = None
|
370 |
+
for arg in rm["args"]:
|
371 |
+
if arg["role"] == "trigger":
|
372 |
+
trigger = arg
|
373 |
+
break
|
374 |
+
if trigger is None:
|
375 |
+
continue
|
376 |
+
trigger_start = trigger["conceptMention"]["span"]["start"]
|
377 |
+
trigger_end = trigger["conceptMention"]["span"]["end"]
|
378 |
+
trigger_text = text[trigger_start:trigger_end]
|
379 |
+
for arg in rm["args"]:
|
380 |
+
if arg["role"] == "trigger":
|
381 |
+
continue
|
382 |
+
argument_start = arg["conceptMention"]["span"]["start"]
|
383 |
+
argument_end = arg["conceptMention"]["span"]["end"]
|
384 |
+
argument_text = text[argument_start:argument_end]
|
385 |
+
relation_mentions.append({
|
386 |
+
"id": f"{sentence_id}-{example_idx}",
|
387 |
+
"trigger": {
|
388 |
+
"id": trigger["conceptMention"]["id"],
|
389 |
+
"text": trigger_text,
|
390 |
+
"start": trigger_start - sentence_start,
|
391 |
+
"end": trigger_end - sentence_start
|
392 |
+
},
|
393 |
+
"argument": {
|
394 |
+
"id": arg["conceptMention"]["id"],
|
395 |
+
"text": argument_text,
|
396 |
+
"start": argument_start - sentence_start,
|
397 |
+
"end": argument_end - sentence_start
|
398 |
+
},
|
399 |
+
"type": arg["role"],
|
400 |
+
"event_type": rm["name"]
|
401 |
+
})
|
402 |
+
yield f"{sentence_id}_{example_idx}", {
|
403 |
+
"id": f"{sentence_id}_{example_idx}",
|
404 |
+
"text": text,
|
405 |
+
"concept_mentions": concept_mentions,
|
406 |
+
"relation_mentions": relation_mentions
|
407 |
+
}
|
408 |
+
example_idx += 1
|
409 |
+
elif self.config.name == "ee":
|
410 |
+
mobie_rms = sentence["relationMentions"]
|
411 |
+
if not mobie_rms:
|
412 |
+
continue
|
413 |
+
event_mentions = []
|
414 |
+
for rm in mobie_rms:
|
415 |
+
# Find trigger in rm["args"]
|
416 |
+
trigger = None
|
417 |
+
for arg in rm["args"]:
|
418 |
+
if arg["role"] == "trigger":
|
419 |
+
trigger = arg
|
420 |
+
break
|
421 |
+
if trigger is None:
|
422 |
+
continue
|
423 |
+
trigger_start = trigger["conceptMention"]["span"]["start"]
|
424 |
+
trigger_end = trigger["conceptMention"]["span"]["end"]
|
425 |
+
trigger_text = text[trigger_start:trigger_end]
|
426 |
+
args = []
|
427 |
+
for arg in rm["args"]:
|
428 |
+
if arg["role"] == "trigger":
|
429 |
+
continue
|
430 |
+
arg_start = arg["conceptMention"]["span"]["start"]
|
431 |
+
arg_end = arg["conceptMention"]["span"]["end"]
|
432 |
+
arg_text = text[arg_start:arg_end]
|
433 |
+
args.append({
|
434 |
+
"id": arg["conceptMention"]["id"],
|
435 |
+
"text": arg_text,
|
436 |
+
"start": arg_start - sentence_start,
|
437 |
+
"end": arg_end - sentence_start,
|
438 |
+
"role": arg["role"],
|
439 |
+
"type": arg["conceptMention"]["type"]
|
440 |
+
})
|
441 |
+
event_mentions.append({
|
442 |
+
"id": rm["id"],
|
443 |
+
"trigger": {
|
444 |
+
"id": trigger["conceptMention"]["id"],
|
445 |
+
"text": trigger_text,
|
446 |
+
"start": trigger_start - sentence_start,
|
447 |
+
"end": trigger_end - sentence_start
|
448 |
+
},
|
449 |
+
"arguments": args,
|
450 |
+
"event_type": rm["name"]
|
451 |
+
})
|
452 |
+
yield sentence_id, {
|
453 |
+
"id": sentence_id,
|
454 |
+
"text": text,
|
455 |
+
"entity_mentions": concept_mentions,
|
456 |
+
"event_mentions": event_mentions
|
457 |
+
}
|
458 |
+
else:
|
459 |
+
raise ValueError("Invalid configuration name")
|