|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
"""\ |
|
MobIE is a German-language dataset which is human-annotated with 20 coarse- and fine-grained entity types and entity linking information for geographically linkable entities. The dataset consists of 3,232 social media texts and traffic reports with 91K tokens, and contains 20.5K annotated entities, 13.1K of which are linked to a knowledge base. A subset of the dataset is human-annotated with seven mobility-related, n-ary relation types, while the remaining documents are annotated using a weakly-supervised labeling approach implemented with the Snorkel framework. The dataset combines annotations for NER, EL and RE, and thus can be used for joint and multi-task learning of these fundamental information extraction tasks.""" |
|
|
|
import re |
|
import json |
|
from json import JSONDecodeError, JSONDecoder |
|
|
|
import datasets |
|
|
|
|
|
_CITATION = """\ |
|
@inproceedings{hennig-etal-2021-mobie, |
|
title = "{M}ob{IE}: A {G}erman Dataset for Named Entity Recognition, Entity Linking and Relation Extraction in the Mobility Domain", |
|
author = "Hennig, Leonhard and |
|
Truong, Phuc Tran and |
|
Gabryszak, Aleksandra", |
|
booktitle = "Proceedings of the 17th Conference on Natural Language Processing (KONVENS 2021)", |
|
month = "6--9 " # sep, |
|
year = "2021", |
|
address = {D{\"u}sseldorf, Germany}, |
|
publisher = "KONVENS 2021 Organizers", |
|
url = "https://aclanthology.org/2021.konvens-1.22", |
|
pages = "223--227", |
|
} |
|
""" |
|
|
|
_DESCRIPTION = """\ |
|
MobIE is a German-language dataset which is human-annotated with 20 coarse- and fine-grained entity types and entity linking information for geographically linkable entities. The dataset consists of 3,232 social media texts and traffic reports with 91K tokens, and contains 20.5K annotated entities, 13.1K of which are linked to a knowledge base. A subset of the dataset is human-annotated with seven mobility-related, n-ary relation types, while the remaining documents are annotated using a weakly-supervised labeling approach implemented with the Snorkel framework. The dataset combines annotations for NER, EL and RE, and thus can be used for joint and multi-task learning of these fundamental information extraction tasks.""" |
|
|
|
_HOMEPAGE = "https://github.com/dfki-nlp/mobie" |
|
|
|
_LICENSE = "CC-BY 4.0" |
|
|
|
_URLs = { |
|
"train": "https://github.com/DFKI-NLP/MobIE/raw/master/v1_20210811/train.jsonl.gz", |
|
"dev": "https://github.com/DFKI-NLP/MobIE/raw/master/v1_20210811/dev.jsonl.gz", |
|
"test": "https://github.com/DFKI-NLP/MobIE/raw/master/v1_20210811/test.jsonl.gz", |
|
} |
|
|
|
|
|
def simplify_dict(d, remove_attribute=True): |
|
"""Simplify nested dictionary by removing unnecessary keys""" |
|
if isinstance(d, dict): |
|
new_dict = {} |
|
for k, v in d.items(): |
|
if remove_attribute and k == "attributes": |
|
continue |
|
if isinstance(v, dict) and len(v) == 1: |
|
if "string" in v: |
|
new_dict[k] = v["string"] |
|
elif "map" in v: |
|
new_dict[k] = v["map"] |
|
elif "array" in v: |
|
new_dict[k] = simplify_dict(v["array"]) |
|
else: |
|
new_dict[k] = simplify_dict(v) |
|
else: |
|
new_dict[k] = simplify_dict(v) |
|
return new_dict |
|
elif isinstance(d, list): |
|
return [simplify_dict(x) for x in d] |
|
else: |
|
return d |
|
|
|
|
|
def find_concept_mention_token_offsets(sentence, concept_mention): |
|
arg_char_start = concept_mention["span"]["start"] |
|
arg_char_end = concept_mention["span"]["end"] |
|
arg_start = -1 |
|
arg_end = -1 |
|
for idx, token in enumerate(sentence["tokens"]): |
|
if token["span"]["start"] == arg_char_start: |
|
arg_start = idx |
|
if token["span"]["end"] == arg_char_end: |
|
arg_end = idx+1 |
|
assert arg_start != -1 and arg_end != -1, f"Could not find token offsets for {concept_mention['id']}" |
|
return arg_start, arg_end |
|
|
|
|
|
def fix_doc(doc): |
|
"""Fix document with faulty spans. REMOVE IF FIXED IN DATASET!""" |
|
if doc["id"] == "1111185208647274501": |
|
offset = 0 |
|
|
|
tokens = doc["tokens"]["array"] |
|
for idx, token in enumerate(tokens): |
|
if idx == 6: |
|
offset += 1 |
|
token["span"]["start"] -= offset |
|
if idx == 3: |
|
offset += 1 |
|
token["span"]["end"] -= offset |
|
|
|
offset = 0 |
|
concept_mentions = doc["conceptMentions"]["array"] |
|
for idx, cm in enumerate(concept_mentions): |
|
if idx == 1 or idx == 2: |
|
offset += 1 |
|
cm["span"]["start"] -= offset |
|
cm["span"]["end"] -= offset |
|
rm = doc["relationMentions"]["array"][0] |
|
rm["span"]["start"] -= 1 |
|
rm["span"]["end"] -= 2 |
|
rm["args"]["array"][0]["conceptMention"]["span"]["start"] -= 1 |
|
rm["args"]["array"][0]["conceptMention"]["span"]["end"] -= 1 |
|
rm["args"]["array"][1]["conceptMention"]["span"]["start"] -= 2 |
|
rm["args"]["array"][1]["conceptMention"]["span"]["end"] -= 2 |
|
|
|
doc["tokens"]["array"] = tokens |
|
doc["sentences"]["array"][0]["span"]["end"] -= 2 |
|
doc["sentences"]["array"][0]["tokens"]["array"] = tokens[:20] |
|
doc["sentences"]["array"][0]["conceptMentions"]["array"] = concept_mentions[:-1] |
|
doc["sentences"]["array"][0]["relationMentions"]["array"] = [rm] |
|
doc["sentences"]["array"][1]["span"]["start"] -= 2 |
|
doc["sentences"]["array"][1]["span"]["end"] -= 2 |
|
doc["sentences"]["array"][1]["tokens"]["array"] = tokens[20:] |
|
doc["sentences"]["array"][1]["conceptMentions"]["array"] = [concept_mentions[-1]] |
|
print("Fixed spans") |
|
return doc |
|
|
|
|
|
class Mobie(datasets.GeneratorBasedBuilder): |
|
"""MobIE is a German-language dataset which is human-annotated with 20 coarse- and fine-grained entity types and entity linking information for geographically linkable entities""" |
|
|
|
VERSION = datasets.Version("1.0.0") |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
BUILDER_CONFIGS = [ |
|
datasets.BuilderConfig(name="ner", version=VERSION, description="MobIE V1 NER"), |
|
datasets.BuilderConfig(name="el", version=VERSION, description="MobIE V1 Entity Linking"), |
|
datasets.BuilderConfig(name="re", version=VERSION, description="MobIE V1 Relation Extraction"), |
|
datasets.BuilderConfig(name="ee", version=VERSION, description="MobIE V1 Event Extraction"), |
|
] |
|
DEFAULT_CONFIG_NAME = "ner" |
|
|
|
def _info(self): |
|
labels = [ |
|
"date", |
|
"disaster-type", |
|
"distance", |
|
"duration", |
|
"event-cause", |
|
"location", |
|
"location-city", |
|
"location-route", |
|
"location-stop", |
|
"location-street", |
|
"money", |
|
"number", |
|
"organization", |
|
"organization-company", |
|
"org-position", |
|
"percent", |
|
"person", |
|
"set", |
|
"time", |
|
"trigger", |
|
] |
|
entity_mentions = [ |
|
{ |
|
"id": datasets.Value("string"), |
|
"text": datasets.Value("string"), |
|
"start": datasets.Value("int32"), |
|
"end": datasets.Value("int32"), |
|
"type": datasets.features.ClassLabel(names=labels), |
|
"refids": [ |
|
{ |
|
"key": datasets.Value("string"), |
|
"value": datasets.Value("string") |
|
} |
|
] |
|
} |
|
] |
|
prefixes = ["B", "I"] |
|
ner_tags = ["O"] + [f"{prefix}-{label}" for prefix in prefixes for label in labels] |
|
if self.config.name == "ner": |
|
features = datasets.Features( |
|
{ |
|
"id": datasets.Value("string"), |
|
"tokens": datasets.Sequence(datasets.Value("string")), |
|
"ner_tags": datasets.Sequence( |
|
datasets.features.ClassLabel( |
|
names=ner_tags |
|
) |
|
), |
|
} |
|
) |
|
elif self.config.name == "el": |
|
features = datasets.Features( |
|
{ |
|
"id": datasets.Value("string"), |
|
"text": datasets.Value("string"), |
|
"entity_mentions": entity_mentions |
|
} |
|
) |
|
elif self.config.name == "re": |
|
features = datasets.Features( |
|
{ |
|
"id": datasets.Value("string"), |
|
"tokens": datasets.Sequence(datasets.Value("string")), |
|
"entities": datasets.Sequence([datasets.Value("int32")]), |
|
"entity_roles": datasets.Sequence(datasets.features.ClassLabel( |
|
names=[ |
|
"no_arg", "trigger", "location", "delay", "direction", "start_loc", "end_loc", |
|
"start_date", "end_date", "cause", "jam_length", "route" |
|
] |
|
)), |
|
"entity_types": datasets.Sequence(datasets.features.ClassLabel( |
|
names=labels |
|
)), |
|
"event_type": datasets.features.ClassLabel( |
|
names=[ |
|
"O", "Accident", "CanceledRoute", "CanceledStop", "Delay", "Obstruction", |
|
"RailReplacementService", "TrafficJam" |
|
] |
|
), |
|
"entity_ids": datasets.Sequence(datasets.Value("string")) |
|
} |
|
) |
|
elif self.config.name == "ee": |
|
|
|
features = datasets.Features( |
|
{ |
|
"id": datasets.Value("string"), |
|
"text": datasets.Value("string"), |
|
"entity_mentions": entity_mentions, |
|
"event_mentions": [ |
|
{ |
|
"id": datasets.Value("string"), |
|
"trigger": { |
|
"id": datasets.Value("string"), |
|
"text": datasets.Value("string"), |
|
"start": datasets.Value("int32"), |
|
"end": datasets.Value("int32"), |
|
}, |
|
"arguments": [{ |
|
"id": datasets.Value("string"), |
|
"text": datasets.Value("string"), |
|
"start": datasets.Value("int32"), |
|
"end": datasets.Value("int32"), |
|
"role": datasets.features.ClassLabel( |
|
names=[ |
|
"no_arg", "location", "delay", "direction", "start_loc", "end_loc", |
|
"start_date", "end_date", "cause", "jam_length", "route" |
|
] |
|
), |
|
"type": datasets.features.ClassLabel( |
|
names=labels |
|
) |
|
}], |
|
"event_type": datasets.features.ClassLabel( |
|
names=[ |
|
"O", "Accident", "CanceledRoute", "CanceledStop", "Delay", "Obstruction", |
|
"RailReplacementService", "TrafficJam" |
|
] |
|
), |
|
} |
|
], |
|
"tokens": datasets.Sequence(datasets.Value("string")), |
|
"pos_tags": datasets.Sequence(datasets.Value("string")), |
|
"lemma": datasets.Sequence(datasets.Value("string")), |
|
"ner_tags": datasets.Sequence(datasets.features.ClassLabel(names=ner_tags)) |
|
} |
|
) |
|
else: |
|
raise ValueError("Invalid configuration name") |
|
|
|
return datasets.DatasetInfo( |
|
|
|
description=_DESCRIPTION, |
|
|
|
features=features, |
|
|
|
|
|
|
|
supervised_keys=None, |
|
|
|
homepage=_HOMEPAGE, |
|
|
|
license=_LICENSE, |
|
|
|
citation=_CITATION, |
|
) |
|
|
|
def _split_generators(self, dl_manager): |
|
"""Returns SplitGenerators.""" |
|
|
|
|
|
|
|
|
|
data_dir = dl_manager.download_and_extract(_URLs) |
|
return [ |
|
datasets.SplitGenerator( |
|
name=datasets.Split.TRAIN, |
|
|
|
gen_kwargs={"filepath": data_dir["train"], "split": "train"}, |
|
), |
|
datasets.SplitGenerator( |
|
name=datasets.Split.TEST, |
|
|
|
gen_kwargs={"filepath": data_dir["test"], "split": "test"}, |
|
), |
|
datasets.SplitGenerator( |
|
name=datasets.Split.VALIDATION, |
|
|
|
gen_kwargs={"filepath": data_dir["dev"], "split": "dev"}, |
|
), |
|
] |
|
|
|
def _generate_examples(self, filepath, split, sentence_level=False): |
|
"""Yields examples.""" |
|
|
|
if self.config.name == "ner": |
|
NOT_WHITESPACE = re.compile(r"[^\s]") |
|
|
|
def decode_stacked(document, pos=0, decoder=JSONDecoder()): |
|
while True: |
|
match = NOT_WHITESPACE.search(document, pos) |
|
if not match: |
|
return |
|
pos = match.start() |
|
try: |
|
obj, pos = decoder.raw_decode(document, pos) |
|
except JSONDecodeError: |
|
raise |
|
yield obj |
|
|
|
with open(filepath, encoding="utf-8") as f: |
|
raw = f.read() |
|
|
|
for doc in decode_stacked(raw): |
|
if doc["id"] == "1111185208647274501": |
|
doc = fix_doc(doc) |
|
text = doc["text"]["string"] |
|
iterable = doc["sentences"]["array"] if sentence_level else [doc] |
|
for s in iterable: |
|
toks = [] |
|
lbls = [] |
|
sid = s["id"] |
|
for x in s["tokens"]["array"]: |
|
toks.append(text[x["span"]["start"]: x["span"]["end"]]) |
|
lbls.append(x["ner"]["string"]) |
|
|
|
yield sid, { |
|
"id": sid, |
|
"tokens": toks, |
|
"ner_tags": lbls, |
|
} |
|
else: |
|
example_idx = 0 |
|
with open(filepath, encoding="utf-8") as f: |
|
for line in f: |
|
doc = json.loads(line) |
|
if doc["id"] == "1111185208647274501": |
|
doc = fix_doc(doc) |
|
doc = simplify_dict(doc) |
|
text = doc["text"] |
|
iterable = doc["sentences"] if sentence_level else [doc] |
|
for sentence in iterable: |
|
sentence_id = sentence["id"] |
|
sentence_start = sentence["span"]["start"] if "span" in sentence else 0 |
|
mobie_cms = sentence["conceptMentions"] |
|
entity_mentions = [] |
|
for cm in mobie_cms: |
|
char_start = cm["span"]["start"] |
|
char_end = cm["span"]["end"] |
|
|
|
start, end = find_concept_mention_token_offsets(sentence, cm) |
|
cm_text = text[char_start:char_end] |
|
entity_id = "NIL" |
|
for refid in cm["refids"]: |
|
if refid["key"] == "osm_id": |
|
entity_id = refid["value"] |
|
break |
|
entity_mentions.append({ |
|
"text": cm_text, |
|
"start": start, |
|
"end": end, |
|
"char_start": char_start - sentence_start, |
|
"char_end": char_end - sentence_start, |
|
"type": cm["type"], |
|
"entity_id": entity_id, |
|
"refids": [ |
|
{ |
|
"key": refid["key"], |
|
"value": refid["value"] |
|
} for refid in cm["refids"] |
|
] if "refids" in cm and cm["refids"] else [] |
|
}) |
|
tokens = [] |
|
lemmas = [] |
|
ner_tags = [] |
|
pos_tags = [] |
|
for token in sentence["tokens"]: |
|
token_text = text[token["span"]["start"]:token["span"]["end"]] |
|
tokens.append(token_text) |
|
lemmas.append(token["lemma"]) |
|
ner_tags.append(token["ner"]) |
|
pos_tags.append(token["posTag"]) |
|
if self.config.name == "el": |
|
yield sentence_id, { |
|
"id": sentence_id, |
|
"text": text, |
|
"tokens": tokens, |
|
"entity_mentions": entity_mentions |
|
} |
|
elif self.config.name == "re": |
|
mobie_rms = sentence["relationMentions"] |
|
if not mobie_rms: |
|
continue |
|
entities = [] |
|
entity_types = [] |
|
entity_ids = [] |
|
for cm in entity_mentions: |
|
entities.append([cm["start"], cm["end"]]) |
|
entity_types.append(cm["type"]) |
|
entity_ids.append(cm["entity_id"]) |
|
for rm in mobie_rms: |
|
entity_roles = ["no_arg"] * len(entities) |
|
for arg in rm["args"]: |
|
entity_role = arg["role"] |
|
|
|
cm = arg["conceptMention"] |
|
start, end = find_concept_mention_token_offsets(sentence, cm) |
|
entity_idx = -1 |
|
for idx, entity in enumerate(entities): |
|
if entity == [start, end]: |
|
entity_idx = idx |
|
break |
|
assert entity_idx != -1, f"Could not find entity for {cm['id']}" |
|
entity_roles[entity_idx] = entity_role |
|
yield f"{sentence_id}_{example_idx}", { |
|
"id": f"{sentence_id}_{example_idx}", |
|
"tokens": tokens, |
|
"entities": entities, |
|
"entity_roles": entity_roles, |
|
"entity_types": entity_types, |
|
"event_type": rm["name"], |
|
"entity_ids": entity_ids |
|
} |
|
example_idx += 1 |
|
elif self.config.name == "ee": |
|
mobie_rms = sentence["relationMentions"] |
|
if not mobie_rms: |
|
continue |
|
event_mentions = [] |
|
for rm in mobie_rms: |
|
|
|
trigger = None |
|
for arg in rm["args"]: |
|
if arg["role"] == "trigger": |
|
trigger = arg |
|
break |
|
if trigger is None: |
|
continue |
|
trigger_char_start = trigger["conceptMention"]["span"]["start"] |
|
trigger_char_end = trigger["conceptMention"]["span"]["end"] |
|
trigger_start, trigger_end = find_concept_mention_token_offsets(sentence, trigger["conceptMention"]) |
|
trigger_text = text[trigger_char_start:trigger_char_end] |
|
args = [] |
|
for arg in rm["args"]: |
|
if arg["role"] == "trigger": |
|
continue |
|
arg_char_start = arg["conceptMention"]["span"]["start"] |
|
arg_char_end = arg["conceptMention"]["span"]["end"] |
|
arg_start = -1 |
|
arg_end = -1 |
|
for idx, token in enumerate(sentence["tokens"]): |
|
if token["span"]["start"] == arg_char_start: |
|
arg_start = idx |
|
if token["span"]["end"] == arg_char_end: |
|
arg_end = idx+1 |
|
assert arg_start != -1 and arg_end != -1, f"Could not find token offsets for {arg['conceptMention']['id']}" |
|
arg_text = text[arg_char_start:arg_char_end] |
|
args.append({ |
|
"id": arg["conceptMention"]["id"], |
|
"text": arg_text, |
|
"start": arg_start, |
|
"end": arg_end, |
|
"char_start": arg_char_start - sentence_start, |
|
"char_end": arg_char_end - sentence_start, |
|
"role": arg["role"], |
|
"type": arg["conceptMention"]["type"] |
|
}) |
|
event_mentions.append({ |
|
"id": rm["id"], |
|
"trigger": { |
|
"id": trigger["conceptMention"]["id"], |
|
"text": trigger_text, |
|
"start": trigger_start, |
|
"end": trigger_end, |
|
"char_start": trigger_char_start - sentence_start, |
|
"char_end": trigger_char_end - sentence_start |
|
}, |
|
"arguments": args, |
|
"event_type": rm["name"] |
|
}) |
|
yield sentence_id, { |
|
"id": sentence_id, |
|
"text": text, |
|
"entity_mentions": entity_mentions, |
|
"event_mentions": event_mentions, |
|
"tokens": tokens, |
|
"pos_tags": pos_tags, |
|
"lemma": lemmas, |
|
"ner_tags": ner_tags |
|
} |
|
else: |
|
raise ValueError("Invalid configuration name") |
|
|