File size: 6,634 Bytes
0f218f8
 
 
 
 
170614b
0f218f8
170614b
0f218f8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
cc5f84c
 
 
0f218f8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
cc5f84c
 
0f218f8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
---
annotations_creators:
- expert-generated
language_creators:
- found
language:
- de
license:
- cc-by-4.0
multilinguality:
- monolingual
paperswithcode_id: mobie
pretty_name: MobIE
size_categories:
- 10K<n<100K
source_datasets:
- original
task_categories:
- structure-prediction
task_ids:
- named-entity-recognition
---

# Dataset Card for "MobIE"

## Table of Contents
- [Dataset Description](#dataset-description)
  - [Dataset Summary](#dataset-summary)
  - [Supported Tasks and Leaderboards](#supported-tasks-and-leaderboards)
  - [Languages](#languages)
- [Dataset Structure](#dataset-structure)
  - [Data Instances](#data-instances)
  - [Data Fields](#data-fields)
  - [Data Splits](#data-splits)
- [Dataset Creation](#dataset-creation)
  - [Curation Rationale](#curation-rationale)
  - [Source Data](#source-data)
  - [Annotations](#annotations)
  - [Personal and Sensitive Information](#personal-and-sensitive-information)
- [Considerations for Using the Data](#considerations-for-using-the-data)
  - [Social Impact of Dataset](#social-impact-of-dataset)
  - [Discussion of Biases](#discussion-of-biases)
  - [Other Known Limitations](#other-known-limitations)
- [Additional Information](#additional-information)
  - [Dataset Curators](#dataset-curators)
  - [Licensing Information](#licensing-information)
  - [Citation Information](#citation-information)
  - [Contributions](#contributions)

## Dataset Description

- **Homepage:** [https://github.com/dfki-nlp/mobie](https://github.com/dfki-nlp/mobie)
- **Repository:** [https://github.com/dfki-nlp/mobie](https://github.com/dfki-nlp/mobie)
- **Paper:** [https://aclanthology.org/2021.konvens-1.22/](https://aclanthology.org/2021.konvens-1.22/)
- **Point of Contact:** See [https://github.com/dfki-nlp/mobie](https://github.com/dfki-nlp/mobie) 
- **Size of downloaded dataset files:** 7.8 MB
- **Size of the generated dataset:** 1.9 MB
- **Total amount of disk used:** 9.7 MB

### Dataset Summary

This script is for loading the MobIE dataset from https://github.com/dfki-nlp/mobie. 

MobIE is a German-language dataset which is human-annotated with 20 coarse- and fine-grained entity types and entity linking information for geographically linkable entities. The dataset consists of 3,232 social media texts and traffic reports with 91K tokens, and contains 20.5K annotated entities, 13.1K of which are linked to a knowledge base. A subset of the dataset is human-annotated with seven mobility-related, n-ary relation types, while the remaining documents are annotated using a weakly-supervised labeling approach implemented with the Snorkel framework. The dataset combines annotations for NER, EL and RE, and thus can be used for joint and multi-task learning of these fundamental information extraction tasks.

This version of the dataset loader provides NER tags only. NER tags use the `BIO` tagging scheme. 

For more details see https://github.com/dfki-nlp/mobie and https://aclanthology.org/2021.konvens-1.22/.

### Supported Tasks and Leaderboards

- **Tasks:** Named Entity Recognition
- **Leaderboards:**

### Languages

German

## Dataset Structure

### Data Instances

- **Size of downloaded dataset files:** 7.8 MB
- **Size of the generated dataset:** 1.9 MB
- **Total amount of disk used:** 9.7 MB

An example of 'train' looks as follows.

```json
{ 
  'id': 'http://www.ndr.de/nachrichten/verkehr/index.html#2@2016-05-04T21:02:14.000+02:00',
  'tokens': ['Vorsicht', 'bitte', 'auf', 'der', 'A28', 'Leer', 'Richtung', 'Oldenburg', 'zwischen', 'Zwischenahner', 'Meer', 'und', 'Neuenkruge', 'liegen', 'Gegenstände', '!'], 
  'ner_tags': [0, 0, 0, 0, 19, 13, 0, 13, 0, 11, 12, 0, 11, 0, 0, 0]
}
```


### Data Fields

The data fields are the same among all splits.

- `id`: a `string` feature.
- `tokens`: a `list` of `string` features.
- `ner_tags`: a `list` of classification labels, with possible values including `O` (0), `B-date` (1), `I-date` (2), `B-disaster-type` (3), `I-disaster-type` (4), ...

### Data Splits

|           | Train  |  Dev  | Test |
| -----     | ------ | ----- | ---- |
| MobIE     | 4785 | 1082 | 1210 |

## Dataset Creation

### Curation Rationale

[More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)

### Source Data

#### Initial Data Collection and Normalization

[More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)

#### Who are the source language producers?

[More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)

### Annotations

#### Annotation process

[More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)

#### Who are the annotators?

[More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)

### Personal and Sensitive Information

[More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)

## Considerations for Using the Data

### Social Impact of Dataset

[More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)

### Discussion of Biases

[More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)

### Other Known Limitations

[More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)

## Additional Information

### Dataset Curators

[More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)

### Licensing Information

[CC BY-SA 4.0 license](https://creativecommons.org/licenses/by-sa/4.0/)

### Citation Information

```
@inproceedings{hennig-etal-2021-mobie,
    title = "{M}ob{IE}: A {G}erman Dataset for Named Entity Recognition, Entity Linking and Relation Extraction in the Mobility Domain",
    author = "Hennig, Leonhard  and
      Truong, Phuc Tran  and
      Gabryszak, Aleksandra",
    booktitle = "Proceedings of the 17th Conference on Natural Language Processing (KONVENS 2021)",
    month = "6--9 " # sep,
    year = "2021",
    address = {D{\"u}sseldorf, Germany},
    publisher = "KONVENS 2021 Organizers",
    url = "https://aclanthology.org/2021.konvens-1.22",
    pages = "223--227",
}
```


### Contributions