Datasets:

Languages:
English
ArXiv:
License:
File size: 8,140 Bytes
23082db
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
# coding=utf-8
# Copyright 2022 The current dataset script contributor.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

"""The Google-IISc Distant Supervision (GIDS) dataset for distantly-supervised relation extraction"""

import csv
import datasets

_CITATION = """\
@inproceedings{bassignana-plank-2022-crossre,
    title = "Cross{RE}: A {C}ross-{D}omain {D}ataset for {R}elation {E}xtraction",
    author = "Bassignana, Elisa and Plank, Barbara",
    booktitle = "Findings of the Association for Computational Linguistics: EMNLP 2022",
    year = "2022",
    publisher = "Association for Computational Linguistics"
}
"""

_DESCRIPTION = """\
Google-IISc Distant Supervision (GIDS) is a new dataset for distantly-supervised relation extraction.
GIDS is seeded from the human-judged Google relation extraction corpus.
"""

_HOMEPAGE = ""

_LICENSE = ""

# The HuggingFace dataset library don't host the datasets but only point to the original files
# This can be an arbitrary nested dict/list of URLs (see below in `_split_generators` method)
_URLs = {
    "train": "https://raw.githubusercontent.com/SharmisthaJat/RE-DS-Word-Attention-Models/master/Data/GIDS/train.tsv",
    "validation": "https://raw.githubusercontent.com/SharmisthaJat/RE-DS-Word-Attention-Models/master/Data/GIDS/dev.tsv",
    "test": "https://raw.githubusercontent.com/SharmisthaJat/RE-DS-Word-Attention-Models/master/Data/GIDS/test.tsv",
}
_VERSION = datasets.Version("1.0.0")

_CLASS_LABELS = [
    "NA",
    "/people/person/education./education/education/institution",
    "/people/person/education./education/education/degree",
    "/people/person/place_of_birth",
    "/people/deceased_person/place_of_death"
]


def replace_underscore_in_span(text, start, end):
    cleaned_text = text[:start] + text[start:end].replace("_", " ") + text[end:]
    return cleaned_text


class GIDS(datasets.GeneratorBasedBuilder):
    """Google-IISc Distant Supervision (GIDS) is a new dataset for distantly-supervised relation extraction."""

    BUILDER_CONFIGS = [
        datasets.BuilderConfig(
            name="gids", version=_VERSION, description="GIDS dataset."
        ),
        datasets.BuilderConfig(
            name="gids_formatted", version=_VERSION, description="Formatted GIDS dataset."
        ),
    ]

    DEFAULT_CONFIG_NAME = "gids"  # type: ignore

    def _info(self):
        if self.config.name == "gids_formatted":
            features = datasets.Features(
                {
                    "token": datasets.Sequence(datasets.Value("string")),
                    "subj_start": datasets.Value("int32"),
                    "subj_end": datasets.Value("int32"),
                    "obj_start": datasets.Value("int32"),
                    "obj_end": datasets.Value("int32"),
                    "relation": datasets.ClassLabel(names=_CLASS_LABELS),
                }
            )
        else:
            features = datasets.Features(
                {
                    "sentence": datasets.Value("string"),
                    "subj_id": datasets.Value("string"),
                    "obj_id": datasets.Value("string"),
                    "subj_text": datasets.Value("string"),
                    "obj_text": datasets.Value("string"),
                    "relation": datasets.ClassLabel(names=_CLASS_LABELS)
                }
            )

        return datasets.DatasetInfo(
            # This is the description that will appear on the datasets page.
            description=_DESCRIPTION,
            # This defines the different columns of the dataset and their types
            features=features,  # Here we define them above because they are different between the two configurations
            # If there's a common (input, target) tuple from the features,
            # specify them here. They'll be used if as_supervised=True in
            # builder.as_dataset.
            supervised_keys=None,
            # Homepage of the dataset for documentation
            homepage=_HOMEPAGE,
            # License for the dataset if available
            license=_LICENSE,
            # Citation for the dataset
            citation=_CITATION,
        )

    def _split_generators(self, dl_manager):
        """Returns SplitGenerators."""
        # If several configurations are possible (listed in BUILDER_CONFIGS), the configuration selected by the user is in self.config.name

        # dl_manager is a datasets.download.DownloadManager that can be used to download and extract URLs
        # It can accept any type or nested list/dict and will give back the same structure with the url replaced with path to local files.
        # By default the archives will be extracted and a path to a cached folder where they are extracted is returned instead of the archive

        downloaded_files = dl_manager.download_and_extract(_URLs)

        return [datasets.SplitGenerator(name=i, gen_kwargs={"filepath": downloaded_files[str(i)]})
                for i in [datasets.Split.TRAIN, datasets.Split.VALIDATION, datasets.Split.TEST]]

    def _generate_examples(self, filepath):
        """Yields examples."""
        # This method will receive as arguments the `gen_kwargs` defined in the previous `_split_generators` method.
        # It is in charge of opening the given file and yielding (key, example) tuples from the dataset
        # The key is not important, it's more here for legacy reason (legacy from tfds)
        if self.config.name == "gids_formatted":
            from spacy.lang.en import English
            word_splitter = English()
        else:
            word_splitter = None
        with open(filepath, encoding="utf-8") as f:
            data = csv.reader(f, delimiter="\t")
            for id_, example in enumerate(data):
                text = example[5].strip()[:-9].strip()  # remove '###END###' from text,
                subj_text = example[2]
                obj_text = example[3]
                rel_type = example[4]

                if self.config.name == "gids_formatted":
                    subj_char_start = text.find(subj_text)
                    assert subj_char_start != -1, f"Did not find <{subj_text}> in the text"
                    subj_char_end = subj_char_start + len(subj_text)
                    obj_char_start = text.find(obj_text)
                    assert obj_char_start != -1, f"Did not find <{obj_text}> in the text"
                    obj_char_end = obj_char_start + len(obj_text)
                    text = replace_underscore_in_span(text, subj_char_start, subj_char_end)
                    text = replace_underscore_in_span(text, obj_char_start, obj_char_end)
                    doc = word_splitter(text)
                    word_tokens = [t.text for t in doc]
                    subj_span = doc.char_span(subj_char_start, subj_char_end, alignment_mode="expand")
                    obj_span = doc.char_span(obj_char_start, obj_char_end, alignment_mode="expand")

                    yield id_, {
                        "token": word_tokens,
                        "subj_start": subj_span.start,
                        "subj_end": subj_span.end,
                        "obj_start": obj_span.start,
                        "obj_end": obj_span.end,
                        "relation": rel_type,
                    }
                else:
                    yield id_, {
                        "sentence": text,
                        "subj_id": example[0],
                        "obj_id": example[1],
                        "subj_text": subj_text,
                        "obj_text": obj_text,
                        "relation": rel_type,
                    }