Datasets:
Tasks:
Text Classification
Sub-tasks:
multi-class-classification
Languages:
English
ArXiv:
Tags:
relation extraction
License:
File size: 8,140 Bytes
23082db |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 |
# coding=utf-8
# Copyright 2022 The current dataset script contributor.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""The Google-IISc Distant Supervision (GIDS) dataset for distantly-supervised relation extraction"""
import csv
import datasets
_CITATION = """\
@inproceedings{bassignana-plank-2022-crossre,
title = "Cross{RE}: A {C}ross-{D}omain {D}ataset for {R}elation {E}xtraction",
author = "Bassignana, Elisa and Plank, Barbara",
booktitle = "Findings of the Association for Computational Linguistics: EMNLP 2022",
year = "2022",
publisher = "Association for Computational Linguistics"
}
"""
_DESCRIPTION = """\
Google-IISc Distant Supervision (GIDS) is a new dataset for distantly-supervised relation extraction.
GIDS is seeded from the human-judged Google relation extraction corpus.
"""
_HOMEPAGE = ""
_LICENSE = ""
# The HuggingFace dataset library don't host the datasets but only point to the original files
# This can be an arbitrary nested dict/list of URLs (see below in `_split_generators` method)
_URLs = {
"train": "https://raw.githubusercontent.com/SharmisthaJat/RE-DS-Word-Attention-Models/master/Data/GIDS/train.tsv",
"validation": "https://raw.githubusercontent.com/SharmisthaJat/RE-DS-Word-Attention-Models/master/Data/GIDS/dev.tsv",
"test": "https://raw.githubusercontent.com/SharmisthaJat/RE-DS-Word-Attention-Models/master/Data/GIDS/test.tsv",
}
_VERSION = datasets.Version("1.0.0")
_CLASS_LABELS = [
"NA",
"/people/person/education./education/education/institution",
"/people/person/education./education/education/degree",
"/people/person/place_of_birth",
"/people/deceased_person/place_of_death"
]
def replace_underscore_in_span(text, start, end):
cleaned_text = text[:start] + text[start:end].replace("_", " ") + text[end:]
return cleaned_text
class GIDS(datasets.GeneratorBasedBuilder):
"""Google-IISc Distant Supervision (GIDS) is a new dataset for distantly-supervised relation extraction."""
BUILDER_CONFIGS = [
datasets.BuilderConfig(
name="gids", version=_VERSION, description="GIDS dataset."
),
datasets.BuilderConfig(
name="gids_formatted", version=_VERSION, description="Formatted GIDS dataset."
),
]
DEFAULT_CONFIG_NAME = "gids" # type: ignore
def _info(self):
if self.config.name == "gids_formatted":
features = datasets.Features(
{
"token": datasets.Sequence(datasets.Value("string")),
"subj_start": datasets.Value("int32"),
"subj_end": datasets.Value("int32"),
"obj_start": datasets.Value("int32"),
"obj_end": datasets.Value("int32"),
"relation": datasets.ClassLabel(names=_CLASS_LABELS),
}
)
else:
features = datasets.Features(
{
"sentence": datasets.Value("string"),
"subj_id": datasets.Value("string"),
"obj_id": datasets.Value("string"),
"subj_text": datasets.Value("string"),
"obj_text": datasets.Value("string"),
"relation": datasets.ClassLabel(names=_CLASS_LABELS)
}
)
return datasets.DatasetInfo(
# This is the description that will appear on the datasets page.
description=_DESCRIPTION,
# This defines the different columns of the dataset and their types
features=features, # Here we define them above because they are different between the two configurations
# If there's a common (input, target) tuple from the features,
# specify them here. They'll be used if as_supervised=True in
# builder.as_dataset.
supervised_keys=None,
# Homepage of the dataset for documentation
homepage=_HOMEPAGE,
# License for the dataset if available
license=_LICENSE,
# Citation for the dataset
citation=_CITATION,
)
def _split_generators(self, dl_manager):
"""Returns SplitGenerators."""
# If several configurations are possible (listed in BUILDER_CONFIGS), the configuration selected by the user is in self.config.name
# dl_manager is a datasets.download.DownloadManager that can be used to download and extract URLs
# It can accept any type or nested list/dict and will give back the same structure with the url replaced with path to local files.
# By default the archives will be extracted and a path to a cached folder where they are extracted is returned instead of the archive
downloaded_files = dl_manager.download_and_extract(_URLs)
return [datasets.SplitGenerator(name=i, gen_kwargs={"filepath": downloaded_files[str(i)]})
for i in [datasets.Split.TRAIN, datasets.Split.VALIDATION, datasets.Split.TEST]]
def _generate_examples(self, filepath):
"""Yields examples."""
# This method will receive as arguments the `gen_kwargs` defined in the previous `_split_generators` method.
# It is in charge of opening the given file and yielding (key, example) tuples from the dataset
# The key is not important, it's more here for legacy reason (legacy from tfds)
if self.config.name == "gids_formatted":
from spacy.lang.en import English
word_splitter = English()
else:
word_splitter = None
with open(filepath, encoding="utf-8") as f:
data = csv.reader(f, delimiter="\t")
for id_, example in enumerate(data):
text = example[5].strip()[:-9].strip() # remove '###END###' from text,
subj_text = example[2]
obj_text = example[3]
rel_type = example[4]
if self.config.name == "gids_formatted":
subj_char_start = text.find(subj_text)
assert subj_char_start != -1, f"Did not find <{subj_text}> in the text"
subj_char_end = subj_char_start + len(subj_text)
obj_char_start = text.find(obj_text)
assert obj_char_start != -1, f"Did not find <{obj_text}> in the text"
obj_char_end = obj_char_start + len(obj_text)
text = replace_underscore_in_span(text, subj_char_start, subj_char_end)
text = replace_underscore_in_span(text, obj_char_start, obj_char_end)
doc = word_splitter(text)
word_tokens = [t.text for t in doc]
subj_span = doc.char_span(subj_char_start, subj_char_end, alignment_mode="expand")
obj_span = doc.char_span(obj_char_start, obj_char_end, alignment_mode="expand")
yield id_, {
"token": word_tokens,
"subj_start": subj_span.start,
"subj_end": subj_span.end,
"obj_start": obj_span.start,
"obj_end": obj_span.end,
"relation": rel_type,
}
else:
yield id_, {
"sentence": text,
"subj_id": example[0],
"obj_id": example[1],
"subj_text": subj_text,
"obj_text": obj_text,
"relation": rel_type,
}
|