cross_re / cross_re.py
phucdev's picture
Upload dataloading script and README.md
eb58348
# Copyright 2020 The HuggingFace Datasets Authors and the current dataset script contributor.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""CrossRE is a cross-domain dataset for relation extraction"""
import json
import datasets
_CITATION = """\
@inproceedings{bassignana-plank-2022-crossre,
title = "Cross{RE}: A {C}ross-{D}omain {D}ataset for {R}elation {E}xtraction",
author = "Bassignana, Elisa and Plank, Barbara",
booktitle = "Findings of the Association for Computational Linguistics: EMNLP 2022",
year = "2022",
publisher = "Association for Computational Linguistics"
}
"""
_DESCRIPTION = """\
CrossRE is a new, freely-available crossdomain benchmark for RE, which comprises six distinct text domains and includes
multilabel annotations. It includes the following domains: news, politics, natural science, music, literature and
artificial intelligence. The semantic relations are annotated on top of CrossNER (Liu et al., 2021), a cross-domain
dataset for NER which contains domain-specific entity types.
The dataset contains 17 relation labels for the six domains: PART-OF, PHYSICAL, USAGE, ROLE, SOCIAL,
GENERAL-AFFILIATION, COMPARE, TEMPORAL, ARTIFACT, ORIGIN, TOPIC, OPPOSITE, CAUSE-EFFECT, WIN-DEFEAT, TYPEOF, NAMED, and
RELATED-TO.
For details, see the paper: https://arxiv.org/abs/2210.09345
"""
_HOMEPAGE = "https://github.com/mainlp/CrossRE"
# TODO: Add the licence for the dataset here if you can find it
_LICENSE = ""
# The HuggingFace Datasets library doesn't host the datasets but only points to the original files.
# This can be an arbitrary nested dict/list of URLs (see below in `_split_generators` method)
_URLS = {
"news": {
"train": "https://raw.githubusercontent.com/mainlp/CrossRE/main/crossre_data/news-train.json",
"validation": "https://raw.githubusercontent.com/mainlp/CrossRE/main/crossre_data/news-dev.json",
"test": "https://raw.githubusercontent.com/mainlp/CrossRE/main/crossre_data/news-test.json",
},
"politics": {
"train": "https://raw.githubusercontent.com/mainlp/CrossRE/main/crossre_data/politics-train.json",
"validation": "https://raw.githubusercontent.com/mainlp/CrossRE/main/crossre_data/politics-dev.json",
"test": "https://raw.githubusercontent.com/mainlp/CrossRE/main/crossre_data/politics-test.json",
},
"science": {
"train": "https://raw.githubusercontent.com/mainlp/CrossRE/main/crossre_data/science-train.json",
"validation": "https://raw.githubusercontent.com/mainlp/CrossRE/main/crossre_data/science-dev.json",
"test": "https://raw.githubusercontent.com/mainlp/CrossRE/main/crossre_data/science-test.json",
},
"music": {
"train": "https://raw.githubusercontent.com/mainlp/CrossRE/main/crossre_data/music-train.json",
"validation": "https://raw.githubusercontent.com/mainlp/CrossRE/main/crossre_data/music-dev.json",
"test": "https://raw.githubusercontent.com/mainlp/CrossRE/main/crossre_data/music-test.json",
},
"literature": {
"train": "https://raw.githubusercontent.com/mainlp/CrossRE/main/crossre_data/literature-train.json",
"validation": "https://raw.githubusercontent.com/mainlp/CrossRE/main/crossre_data/literature-dev.json",
"test": "https://raw.githubusercontent.com/mainlp/CrossRE/main/crossre_data/literature-test.json",
},
"ai": {
"train": "https://raw.githubusercontent.com/mainlp/CrossRE/main/crossre_data/ai-train.json",
"validation": "https://raw.githubusercontent.com/mainlp/CrossRE/main/crossre_data/ai-dev.json",
"test": "https://raw.githubusercontent.com/mainlp/CrossRE/main/crossre_data/ai-test.json",
},
}
class CrossRE(datasets.GeneratorBasedBuilder):
"""CrossRE is a cross-domain dataset for relation extraction"""
VERSION = datasets.Version("1.1.0")
BUILDER_CONFIGS = [
datasets.BuilderConfig(name="news", version=VERSION,
description="This part of CrossRE covers data from the news domain"),
datasets.BuilderConfig(name="politics", version=VERSION,
description="This part of CrossRE covers data from the politics domain"),
datasets.BuilderConfig(name="science", version=VERSION,
description="This part of CrossRE covers data from the science domain"),
datasets.BuilderConfig(name="music", version=VERSION,
description="This part of CrossRE covers data from the music domain"),
datasets.BuilderConfig(name="literature", version=VERSION,
description="This part of CrossRE covers data from the literature domain"),
datasets.BuilderConfig(name="ai", version=VERSION,
description="This part of CrossRE covers data from the AI domain"),
]
def _info(self):
features = datasets.Features(
{
"doc_key": datasets.Value("string"),
"sentence": datasets.Sequence(datasets.Value("string")),
"ner": [{
"id-start": datasets.Value("int32"),
"id-end": datasets.Value("int32"),
"entity-type": datasets.Value("string"),
}],
"relations": [{
"id_1-start": datasets.Value("int32"),
"id_1-end": datasets.Value("int32"),
"id_2-start": datasets.Value("int32"),
"id_2-end": datasets.Value("int32"),
"relation-type": datasets.Value("string"),
"Exp": datasets.Value("string"), # Explanation of the relation type assigned
"Un": datasets.Value("bool"), # Uncertainty of the annotator
"SA": datasets.Value("bool"), # Syntax Ambiguity which poses a challenge for the annotator
}]
}
)
return datasets.DatasetInfo(
# This is the description that will appear on the datasets page.
description=_DESCRIPTION,
# This defines the different columns of the dataset and their types
features=features, # Here we define them above because they are different between the two configurations
# If there's a common (input, target) tuple from the features, uncomment supervised_keys line below and
# specify them. They'll be used if as_supervised=True in builder.as_dataset.
# supervised_keys=("sentence", "label"),
# Homepage of the dataset for documentation
homepage=_HOMEPAGE,
# License for the dataset if available
license=_LICENSE,
# Citation for the dataset
citation=_CITATION,
)
def _split_generators(self, dl_manager):
# If several configurations are possible (listed in BUILDER_CONFIGS), the configuration selected by the user is in self.config.name
# dl_manager is a datasets.download.DownloadManager that can be used to download and extract URLS
# It can accept any type or nested list/dict and will give back the same structure with the url replaced with path to local files.
# By default the archives will be extracted and a path to a cached folder where they are extracted is returned instead of the archive
urls = _URLS[self.config.name]
downloaded_files = dl_manager.download_and_extract(urls)
return [datasets.SplitGenerator(name=i, gen_kwargs={"filepath": downloaded_files[str(i)]})
for i in [datasets.Split.TRAIN, datasets.Split.VALIDATION, datasets.Split.TEST]]
# method parameters are unpacked from `gen_kwargs` as given in `_split_generators`
def _generate_examples(self, filepath):
# The `key` is for legacy reasons (tfds) and is not important in itself, but must be unique for each example.
with open(filepath, encoding="utf-8") as f:
for row in f:
doc = json.loads(row)
doc_key = doc["doc_key"]
ner = []
for entity in doc["ner"]:
ner.append({
"id-start": entity[0],
"id-end": entity[1],
"entity-type": entity[2],
})
relations = []
for relation in doc["relations"]:
relations.append({
"id_1-start": relation[0],
"id_1-end": relation[1],
"id_2-start": relation[2],
"id_2-end": relation[3],
"relation-type": relation[4],
"Exp": relation[5],
"Un": relation[6],
"SA": relation[7],
})
yield doc_key, {
"doc_key": doc_key,
"sentence": doc["sentence"],
"ner": ner,
"relations": relations
}