Datasets:
Tasks:
Text Classification
Modalities:
Text
Sub-tasks:
multi-class-classification
Languages:
English
Size:
1K - 10K
ArXiv:
# Copyright 2020 The HuggingFace Datasets Authors and the current dataset script contributor. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
"""CrossRE is a cross-domain dataset for relation extraction""" | |
import json | |
import datasets | |
_CITATION = """\ | |
@inproceedings{bassignana-plank-2022-crossre, | |
title = "Cross{RE}: A {C}ross-{D}omain {D}ataset for {R}elation {E}xtraction", | |
author = "Bassignana, Elisa and Plank, Barbara", | |
booktitle = "Findings of the Association for Computational Linguistics: EMNLP 2022", | |
year = "2022", | |
publisher = "Association for Computational Linguistics" | |
} | |
""" | |
_DESCRIPTION = """\ | |
CrossRE is a new, freely-available crossdomain benchmark for RE, which comprises six distinct text domains and includes | |
multilabel annotations. It includes the following domains: news, politics, natural science, music, literature and | |
artificial intelligence. The semantic relations are annotated on top of CrossNER (Liu et al., 2021), a cross-domain | |
dataset for NER which contains domain-specific entity types. | |
The dataset contains 17 relation labels for the six domains: PART-OF, PHYSICAL, USAGE, ROLE, SOCIAL, | |
GENERAL-AFFILIATION, COMPARE, TEMPORAL, ARTIFACT, ORIGIN, TOPIC, OPPOSITE, CAUSE-EFFECT, WIN-DEFEAT, TYPEOF, NAMED, and | |
RELATED-TO. | |
For details, see the paper: https://arxiv.org/abs/2210.09345 | |
""" | |
_HOMEPAGE = "https://github.com/mainlp/CrossRE" | |
# TODO: Add the licence for the dataset here if you can find it | |
_LICENSE = "" | |
# The HuggingFace Datasets library doesn't host the datasets but only points to the original files. | |
# This can be an arbitrary nested dict/list of URLs (see below in `_split_generators` method) | |
_URLS = { | |
"news": { | |
"train": "https://raw.githubusercontent.com/mainlp/CrossRE/main/crossre_data/news-train.json", | |
"validation": "https://raw.githubusercontent.com/mainlp/CrossRE/main/crossre_data/news-dev.json", | |
"test": "https://raw.githubusercontent.com/mainlp/CrossRE/main/crossre_data/news-test.json", | |
}, | |
"politics": { | |
"train": "https://raw.githubusercontent.com/mainlp/CrossRE/main/crossre_data/politics-train.json", | |
"validation": "https://raw.githubusercontent.com/mainlp/CrossRE/main/crossre_data/politics-dev.json", | |
"test": "https://raw.githubusercontent.com/mainlp/CrossRE/main/crossre_data/politics-test.json", | |
}, | |
"science": { | |
"train": "https://raw.githubusercontent.com/mainlp/CrossRE/main/crossre_data/science-train.json", | |
"validation": "https://raw.githubusercontent.com/mainlp/CrossRE/main/crossre_data/science-dev.json", | |
"test": "https://raw.githubusercontent.com/mainlp/CrossRE/main/crossre_data/science-test.json", | |
}, | |
"music": { | |
"train": "https://raw.githubusercontent.com/mainlp/CrossRE/main/crossre_data/music-train.json", | |
"validation": "https://raw.githubusercontent.com/mainlp/CrossRE/main/crossre_data/music-dev.json", | |
"test": "https://raw.githubusercontent.com/mainlp/CrossRE/main/crossre_data/music-test.json", | |
}, | |
"literature": { | |
"train": "https://raw.githubusercontent.com/mainlp/CrossRE/main/crossre_data/literature-train.json", | |
"validation": "https://raw.githubusercontent.com/mainlp/CrossRE/main/crossre_data/literature-dev.json", | |
"test": "https://raw.githubusercontent.com/mainlp/CrossRE/main/crossre_data/literature-test.json", | |
}, | |
"ai": { | |
"train": "https://raw.githubusercontent.com/mainlp/CrossRE/main/crossre_data/ai-train.json", | |
"validation": "https://raw.githubusercontent.com/mainlp/CrossRE/main/crossre_data/ai-dev.json", | |
"test": "https://raw.githubusercontent.com/mainlp/CrossRE/main/crossre_data/ai-test.json", | |
}, | |
} | |
class CrossRE(datasets.GeneratorBasedBuilder): | |
"""CrossRE is a cross-domain dataset for relation extraction""" | |
VERSION = datasets.Version("1.1.0") | |
BUILDER_CONFIGS = [ | |
datasets.BuilderConfig(name="news", version=VERSION, | |
description="This part of CrossRE covers data from the news domain"), | |
datasets.BuilderConfig(name="politics", version=VERSION, | |
description="This part of CrossRE covers data from the politics domain"), | |
datasets.BuilderConfig(name="science", version=VERSION, | |
description="This part of CrossRE covers data from the science domain"), | |
datasets.BuilderConfig(name="music", version=VERSION, | |
description="This part of CrossRE covers data from the music domain"), | |
datasets.BuilderConfig(name="literature", version=VERSION, | |
description="This part of CrossRE covers data from the literature domain"), | |
datasets.BuilderConfig(name="ai", version=VERSION, | |
description="This part of CrossRE covers data from the AI domain"), | |
] | |
def _info(self): | |
features = datasets.Features( | |
{ | |
"doc_key": datasets.Value("string"), | |
"sentence": datasets.Sequence(datasets.Value("string")), | |
"ner": [{ | |
"id-start": datasets.Value("int32"), | |
"id-end": datasets.Value("int32"), | |
"entity-type": datasets.Value("string"), | |
}], | |
"relations": [{ | |
"id_1-start": datasets.Value("int32"), | |
"id_1-end": datasets.Value("int32"), | |
"id_2-start": datasets.Value("int32"), | |
"id_2-end": datasets.Value("int32"), | |
"relation-type": datasets.Value("string"), | |
"Exp": datasets.Value("string"), # Explanation of the relation type assigned | |
"Un": datasets.Value("bool"), # Uncertainty of the annotator | |
"SA": datasets.Value("bool"), # Syntax Ambiguity which poses a challenge for the annotator | |
}] | |
} | |
) | |
return datasets.DatasetInfo( | |
# This is the description that will appear on the datasets page. | |
description=_DESCRIPTION, | |
# This defines the different columns of the dataset and their types | |
features=features, # Here we define them above because they are different between the two configurations | |
# If there's a common (input, target) tuple from the features, uncomment supervised_keys line below and | |
# specify them. They'll be used if as_supervised=True in builder.as_dataset. | |
# supervised_keys=("sentence", "label"), | |
# Homepage of the dataset for documentation | |
homepage=_HOMEPAGE, | |
# License for the dataset if available | |
license=_LICENSE, | |
# Citation for the dataset | |
citation=_CITATION, | |
) | |
def _split_generators(self, dl_manager): | |
# If several configurations are possible (listed in BUILDER_CONFIGS), the configuration selected by the user is in self.config.name | |
# dl_manager is a datasets.download.DownloadManager that can be used to download and extract URLS | |
# It can accept any type or nested list/dict and will give back the same structure with the url replaced with path to local files. | |
# By default the archives will be extracted and a path to a cached folder where they are extracted is returned instead of the archive | |
urls = _URLS[self.config.name] | |
downloaded_files = dl_manager.download_and_extract(urls) | |
return [datasets.SplitGenerator(name=i, gen_kwargs={"filepath": downloaded_files[str(i)]}) | |
for i in [datasets.Split.TRAIN, datasets.Split.VALIDATION, datasets.Split.TEST]] | |
# method parameters are unpacked from `gen_kwargs` as given in `_split_generators` | |
def _generate_examples(self, filepath): | |
# The `key` is for legacy reasons (tfds) and is not important in itself, but must be unique for each example. | |
with open(filepath, encoding="utf-8") as f: | |
for row in f: | |
doc = json.loads(row) | |
doc_key = doc["doc_key"] | |
ner = [] | |
for entity in doc["ner"]: | |
ner.append({ | |
"id-start": entity[0], | |
"id-end": entity[1], | |
"entity-type": entity[2], | |
}) | |
relations = [] | |
for relation in doc["relations"]: | |
relations.append({ | |
"id_1-start": relation[0], | |
"id_1-end": relation[1], | |
"id_2-start": relation[2], | |
"id_2-end": relation[3], | |
"relation-type": relation[4], | |
"Exp": relation[5], | |
"Un": relation[6], | |
"SA": relation[7], | |
}) | |
yield doc_key, { | |
"doc_key": doc_key, | |
"sentence": doc["sentence"], | |
"ner": ner, | |
"relations": relations | |
} | |