Datasets:

Languages:
English
ArXiv:
License:
zhuqi commited on
Commit
745c179
·
1 Parent(s): 507f068

Upload README.md with huggingface_hub

Browse files
Files changed (1) hide show
  1. README.md +24 -0
README.md CHANGED
@@ -1,3 +1,17 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
  # Dataset Card for DailyDialog
2
 
3
  - **Repository:** http://yanran.li/dailydialog
@@ -5,6 +19,16 @@
5
  - **Leaderboard:** None
6
  - **Who transforms the dataset:** Qi Zhu(zhuq96 at gmail dot com)
7
 
 
 
 
 
 
 
 
 
 
 
8
  ### Dataset Summary
9
 
10
  DailyDialog is a high-quality multi-turn dialog dataset. It is intriguing in several aspects. The language is human-written and less noisy. The dialogues in the dataset reflect our daily communication way and cover various topics about our daily life. We also manually label the developed dataset with communication intention and emotion information.
 
1
+ ---
2
+ language:
3
+ - en
4
+ license:
5
+ - cc-by-nc-sa-4.0
6
+ multilinguality:
7
+ - monolingual
8
+ pretty_name: DailyDialog
9
+ size_categories:
10
+ - 10K<n<100K
11
+ task_categories:
12
+ - conversational
13
+ ---
14
+
15
  # Dataset Card for DailyDialog
16
 
17
  - **Repository:** http://yanran.li/dailydialog
 
19
  - **Leaderboard:** None
20
  - **Who transforms the dataset:** Qi Zhu(zhuq96 at gmail dot com)
21
 
22
+ To use this dataset, you need to install [ConvLab-3](https://github.com/ConvLab/ConvLab-3) platform first. Then you can load the dataset via:
23
+ ```
24
+ from convlab.util import load_dataset, load_ontology, load_database
25
+
26
+ dataset = load_dataset('dailydialog')
27
+ ontology = load_ontology('dailydialog')
28
+ database = load_database('dailydialog')
29
+ ```
30
+ For more usage please refer to [here](https://github.com/ConvLab/ConvLab-3/tree/master/data/unified_datasets).
31
+
32
  ### Dataset Summary
33
 
34
  DailyDialog is a high-quality multi-turn dialog dataset. It is intriguing in several aspects. The language is human-written and less noisy. The dialogues in the dataset reflect our daily communication way and cover various topics about our daily life. We also manually label the developed dataset with communication intention and emotion information.