_id
stringlengths 2
6
| partition
stringclasses 3
values | text
stringlengths 87
6.4k
| title
stringclasses 1
value | language
stringclasses 1
value | meta_information
dict |
---|---|---|---|---|---|
d301 | train | def is_same_dict(d1, d2):
"""Test two dictionary is equal on values. (ignore order)
"""
for k, v in d1.items():
if isinstance(v, dict):
is_same_dict(v, d2[k])
else:
assert d1[k] == d2[k]
for k, v in d2.items():
if isinstance(v, dict):
is_same_dict(v, d1[k])
else:
assert d1[k] == d2[k] | PYTHON | {
"dummy_field": ""
} |
|
d302 | train | def file_writelines_flush_sync(path, lines):
"""
Fill file at @path with @lines then flush all buffers
(Python and system buffers)
"""
fp = open(path, 'w')
try:
fp.writelines(lines)
flush_sync_file_object(fp)
finally:
fp.close() | PYTHON | {
"dummy_field": ""
} |
|
d303 | train | def make_kind_check(python_types, numpy_kind):
"""
Make a function that checks whether a scalar or array is of a given kind
(e.g. float, int, datetime, timedelta).
"""
def check(value):
if hasattr(value, 'dtype'):
return value.dtype.kind == numpy_kind
return isinstance(value, python_types)
return check | PYTHON | {
"dummy_field": ""
} |
|
d304 | train | def file_empty(fp):
"""Determine if a file is empty or not."""
# for python 2 we need to use a homemade peek()
if six.PY2:
contents = fp.read()
fp.seek(0)
return not bool(contents)
else:
return not fp.peek() | PYTHON | {
"dummy_field": ""
} |
|
d305 | train | def all_equal(arg1,arg2):
"""
Return a single boolean for arg1==arg2, even for numpy arrays
using element-wise comparison.
Uses all(arg1==arg2) for sequences, and arg1==arg2 otherwise.
If both objects have an '_infinitely_iterable' attribute, they are
not be zipped together and are compared directly instead.
"""
if all(hasattr(el, '_infinitely_iterable') for el in [arg1,arg2]):
return arg1==arg2
try:
return all(a1 == a2 for a1, a2 in zip(arg1, arg2))
except TypeError:
return arg1==arg2 | PYTHON | {
"dummy_field": ""
} |
|
d306 | train | def get_file_size(filename):
"""
Get the file size of a given file
:param filename: string: pathname of a file
:return: human readable filesize
"""
if os.path.isfile(filename):
return convert_size(os.path.getsize(filename))
return None | PYTHON | {
"dummy_field": ""
} |
|
d307 | train | def _check_for_int(x):
"""
This is a compatibility function that takes a C{float} and converts it to an
C{int} if the values are equal.
"""
try:
y = int(x)
except (OverflowError, ValueError):
pass
else:
# There is no way in AMF0 to distinguish between integers and floats
if x == x and y == x:
return y
return x | PYTHON | {
"dummy_field": ""
} |
|
d308 | train | def fill_form(form, data):
"""Prefill form with data.
:param form: The form to fill.
:param data: The data to insert in the form.
:returns: A pre-filled form.
"""
for (key, value) in data.items():
if hasattr(form, key):
if isinstance(value, dict):
fill_form(getattr(form, key), value)
else:
getattr(form, key).data = value
return form | PYTHON | {
"dummy_field": ""
} |
|
d309 | train | def check_clang_apply_replacements_binary(args):
"""Checks if invoking supplied clang-apply-replacements binary works."""
try:
subprocess.check_call([args.clang_apply_replacements_binary, '--version'])
except:
print('Unable to run clang-apply-replacements. Is clang-apply-replacements '
'binary correctly specified?', file=sys.stderr)
traceback.print_exc()
sys.exit(1) | PYTHON | {
"dummy_field": ""
} |
|
d310 | train | def _maybe_fill(arr, fill_value=np.nan):
"""
if we have a compatible fill_value and arr dtype, then fill
"""
if _isna_compat(arr, fill_value):
arr.fill(fill_value)
return arr | PYTHON | {
"dummy_field": ""
} |
|
d311 | train | def extract_alzip (archive, compression, cmd, verbosity, interactive, outdir):
"""Extract a ALZIP archive."""
return [cmd, '-d', outdir, archive] | PYTHON | {
"dummy_field": ""
} |
|
d312 | train | def _maybe_fill(arr, fill_value=np.nan):
"""
if we have a compatible fill_value and arr dtype, then fill
"""
if _isna_compat(arr, fill_value):
arr.fill(fill_value)
return arr | PYTHON | {
"dummy_field": ""
} |
|
d313 | train | def get_lons_from_cartesian(x__, y__):
"""Get longitudes from cartesian coordinates.
"""
return rad2deg(arccos(x__ / sqrt(x__ ** 2 + y__ ** 2))) * sign(y__) | PYTHON | {
"dummy_field": ""
} |
|
d314 | train | def filter_(stream_spec, filter_name, *args, **kwargs):
"""Alternate name for ``filter``, so as to not collide with the
built-in python ``filter`` operator.
"""
return filter(stream_spec, filter_name, *args, **kwargs) | PYTHON | {
"dummy_field": ""
} |
|
d315 | train | def _calculate_distance(latlon1, latlon2):
"""Calculates the distance between two points on earth.
"""
lat1, lon1 = latlon1
lat2, lon2 = latlon2
dlon = lon2 - lon1
dlat = lat2 - lat1
R = 6371 # radius of the earth in kilometers
a = np.sin(dlat / 2)**2 + np.cos(lat1) * np.cos(lat2) * (np.sin(dlon / 2))**2
c = 2 * np.pi * R * np.arctan2(np.sqrt(a), np.sqrt(1 - a)) / 180
return c | PYTHON | {
"dummy_field": ""
} |
|
d316 | train | def find_lt(a, x):
"""Find rightmost value less than x."""
i = bs.bisect_left(a, x)
if i: return i - 1
raise ValueError | PYTHON | {
"dummy_field": ""
} |
|
d317 | train | def get_stationary_distribution(self):
"""Compute the stationary distribution of states.
"""
# The stationary distribution is proportional to the left-eigenvector
# associated with the largest eigenvalue (i.e., 1) of the transition
# matrix.
check_is_fitted(self, "transmat_")
eigvals, eigvecs = np.linalg.eig(self.transmat_.T)
eigvec = np.real_if_close(eigvecs[:, np.argmax(eigvals)])
return eigvec / eigvec.sum() | PYTHON | {
"dummy_field": ""
} |
|
d318 | train | def apply_fit(xy,coeffs):
""" Apply the coefficients from a linear fit to
an array of x,y positions.
The coeffs come from the 'coeffs' member of the
'fit_arrays()' output.
"""
x_new = coeffs[0][2] + coeffs[0][0]*xy[:,0] + coeffs[0][1]*xy[:,1]
y_new = coeffs[1][2] + coeffs[1][0]*xy[:,0] + coeffs[1][1]*xy[:,1]
return x_new,y_new | PYTHON | {
"dummy_field": ""
} |
|
d319 | train | def _tf_squared_euclidean(X, Y):
"""Squared Euclidean distance between the rows of `X` and `Y`.
"""
return tf.reduce_sum(tf.pow(tf.subtract(X, Y), 2), axis=1) | PYTHON | {
"dummy_field": ""
} |
|
d320 | train | def exp_fit_fun(x, a, tau, c):
"""Function used to fit the exponential decay."""
# pylint: disable=invalid-name
return a * np.exp(-x / tau) + c | PYTHON | {
"dummy_field": ""
} |
|
d321 | train | def euclidean(x, y):
"""Standard euclidean distance.
..math::
D(x, y) = \sqrt{\sum_i (x_i - y_i)^2}
"""
result = 0.0
for i in range(x.shape[0]):
result += (x[i] - y[i]) ** 2
return np.sqrt(result) | PYTHON | {
"dummy_field": ""
} |
|
d322 | train | def create_table_from_fits(fitsfile, hduname, colnames=None):
"""Memory efficient function for loading a table from a FITS
file."""
if colnames is None:
return Table.read(fitsfile, hduname)
cols = []
with fits.open(fitsfile, memmap=True) as h:
for k in colnames:
data = h[hduname].data.field(k)
cols += [Column(name=k, data=data)]
return Table(cols) | PYTHON | {
"dummy_field": ""
} |
|
d323 | train | def _gcd_array(X):
"""
Return the largest real value h such that all elements in x are integer
multiples of h.
"""
greatest_common_divisor = 0.0
for x in X:
greatest_common_divisor = _gcd(greatest_common_divisor, x)
return greatest_common_divisor | PYTHON | {
"dummy_field": ""
} |
|
d324 | train | def lint(args):
"""Run lint checks using flake8."""
application = get_current_application()
if not args:
args = [application.name, 'tests']
args = ['flake8'] + list(args)
run.main(args, standalone_mode=False) | PYTHON | {
"dummy_field": ""
} |
|
d325 | train | def torecarray(*args, **kwargs):
"""
Convenient shorthand for ``toarray(*args, **kwargs).view(np.recarray)``.
"""
import numpy as np
return toarray(*args, **kwargs).view(np.recarray) | PYTHON | {
"dummy_field": ""
} |
|
d326 | train | def _type_bool(label,default=False):
"""Shortcut fot boolean like fields"""
return label, abstractSearch.nothing, abstractRender.boolen, default | PYTHON | {
"dummy_field": ""
} |
|
d327 | train | def join_cols(cols):
"""Join list of columns into a string for a SQL query"""
return ", ".join([i for i in cols]) if isinstance(cols, (list, tuple, set)) else cols | PYTHON | {
"dummy_field": ""
} |
|
d328 | train | def parse_form(self, req, name, field):
"""Pull a form value from the request."""
return core.get_value(req.POST, name, field) | PYTHON | {
"dummy_field": ""
} |
|
d329 | train | def type_converter(text):
""" I convert strings into integers, floats, and strings! """
if text.isdigit():
return int(text), int
try:
return float(text), float
except ValueError:
return text, STRING_TYPE | PYTHON | {
"dummy_field": ""
} |
|
d330 | train | def cors_header(func):
""" @cors_header decorator adds CORS headers """
@wraps(func)
def wrapper(self, request, *args, **kwargs):
res = func(self, request, *args, **kwargs)
request.setHeader('Access-Control-Allow-Origin', '*')
request.setHeader('Access-Control-Allow-Headers', 'Content-Type, Access-Control-Allow-Headers, Authorization, X-Requested-With')
return res
return wrapper | PYTHON | {
"dummy_field": ""
} |
|
d331 | train | def pdf(x, mu, std):
"""Probability density function (normal distribution)"""
return (1.0 / (std * sqrt(2 * pi))) * np.exp(-(x - mu) ** 2 / (2 * std ** 2)) | PYTHON | {
"dummy_field": ""
} |
|
d332 | train | def handleFlaskPostRequest(flaskRequest, endpoint):
"""
Handles the specified flask request for one of the POST URLS
Invokes the specified endpoint to generate a response.
"""
if flaskRequest.method == "POST":
return handleHttpPost(flaskRequest, endpoint)
elif flaskRequest.method == "OPTIONS":
return handleHttpOptions()
else:
raise exceptions.MethodNotAllowedException() | PYTHON | {
"dummy_field": ""
} |
|
d333 | train | def pdf(x, mu, std):
"""Probability density function (normal distribution)"""
return (1.0 / (std * sqrt(2 * pi))) * np.exp(-(x - mu) ** 2 / (2 * std ** 2)) | PYTHON | {
"dummy_field": ""
} |
|
d334 | train | def python_mime(fn):
"""
Decorator, which adds correct MIME type for python source to the decorated
bottle API function.
"""
@wraps(fn)
def python_mime_decorator(*args, **kwargs):
response.content_type = "text/x-python"
return fn(*args, **kwargs)
return python_mime_decorator | PYTHON | {
"dummy_field": ""
} |
|
d335 | train | def _spawn_kafka_consumer_thread(self):
"""Spawns a kafka continuous consumer thread"""
self.logger.debug("Spawn kafka consumer thread""")
self._consumer_thread = Thread(target=self._consumer_loop)
self._consumer_thread.setDaemon(True)
self._consumer_thread.start() | PYTHON | {
"dummy_field": ""
} |
|
d336 | train | def flatpages_link_list(request):
"""
Returns a HttpResponse whose content is a Javascript file representing a
list of links to flatpages.
"""
from django.contrib.flatpages.models import FlatPage
link_list = [(page.title, page.url) for page in FlatPage.objects.all()]
return render_to_link_list(link_list) | PYTHON | {
"dummy_field": ""
} |
|
d337 | train | def values(self):
"""Gets the user enter max and min values of where the
raster points should appear on the y-axis
:returns: (float, float) -- (min, max) y-values to bound the raster plot by
"""
lower = float(self.lowerSpnbx.value())
upper = float(self.upperSpnbx.value())
return (lower, upper) | PYTHON | {
"dummy_field": ""
} |
|
d338 | train | def sqlmany(self, stringname, *args):
"""Wrapper for executing many SQL calls on my connection.
First arg is the name of a query, either a key in the
precompiled JSON or a method name in
``allegedb.alchemy.Alchemist``. Remaining arguments should be
tuples of argument sequences to be passed to the query.
"""
if hasattr(self, 'alchemist'):
return getattr(self.alchemist.many, stringname)(*args)
s = self.strings[stringname]
return self.connection.cursor().executemany(s, args) | PYTHON | {
"dummy_field": ""
} |
|
d339 | train | def convolve_gaussian_2d(image, gaussian_kernel_1d):
"""Convolve 2d gaussian."""
result = scipy.ndimage.filters.correlate1d(
image, gaussian_kernel_1d, axis=0)
result = scipy.ndimage.filters.correlate1d(
result, gaussian_kernel_1d, axis=1)
return result | PYTHON | {
"dummy_field": ""
} |
|
d340 | train | def render_template_string(source, **context):
"""Renders a template from the given template source string
with the given context.
:param source: the sourcecode of the template to be
rendered
:param context: the variables that should be available in the
context of the template.
"""
ctx = _app_ctx_stack.top
ctx.app.update_template_context(context)
return _render(ctx.app.jinja_env.from_string(source),
context, ctx.app) | PYTHON | {
"dummy_field": ""
} |
|
d341 | train | def asynchronous(function, event):
"""
Runs the function asynchronously taking care of exceptions.
"""
thread = Thread(target=synchronous, args=(function, event))
thread.daemon = True
thread.start() | PYTHON | {
"dummy_field": ""
} |
|
d342 | train | def HttpResponse403(request, template=KEY_AUTH_403_TEMPLATE,
content=KEY_AUTH_403_CONTENT, content_type=KEY_AUTH_403_CONTENT_TYPE):
"""
HTTP response for forbidden access (status code 403)
"""
return AccessFailedResponse(request, template, content, content_type, status=403) | PYTHON | {
"dummy_field": ""
} |
|
d343 | train | def similarity(self, other):
"""Calculates the cosine similarity between this vector and another
vector."""
if self.magnitude == 0 or other.magnitude == 0:
return 0
return self.dot(other) / self.magnitude | PYTHON | {
"dummy_field": ""
} |
|
d344 | train | def default_static_path():
"""
Return the path to the javascript bundle
"""
fdir = os.path.dirname(__file__)
return os.path.abspath(os.path.join(fdir, '../assets/')) | PYTHON | {
"dummy_field": ""
} |
|
d345 | train | def count_list(the_list):
"""
Generates a count of the number of times each unique item appears in a list
"""
count = the_list.count
result = [(item, count(item)) for item in set(the_list)]
result.sort()
return result | PYTHON | {
"dummy_field": ""
} |
|
d346 | train | def round_to_float(number, precision):
"""Round a float to a precision"""
rounded = Decimal(str(floor((number + precision / 2) // precision))
) * Decimal(str(precision))
return float(rounded) | PYTHON | {
"dummy_field": ""
} |
|
d347 | train | def _calc_overlap_count(
markers1: dict,
markers2: dict,
):
"""Calculate overlap count between the values of two dictionaries
Note: dict values must be sets
"""
overlaps=np.zeros((len(markers1), len(markers2)))
j=0
for marker_group in markers1:
tmp = [len(markers2[i].intersection(markers1[marker_group])) for i in markers2.keys()]
overlaps[j,:] = tmp
j += 1
return overlaps | PYTHON | {
"dummy_field": ""
} |
|
d348 | train | def intround(value):
"""Given a float returns a rounded int. Should give the same result on
both Py2/3
"""
return int(decimal.Decimal.from_float(
value).to_integral_value(decimal.ROUND_HALF_EVEN)) | PYTHON | {
"dummy_field": ""
} |
|
d349 | train | def _datetime_to_date(arg):
"""
convert datetime/str to date
:param arg:
:return:
"""
_arg = parse(arg)
if isinstance(_arg, datetime.datetime):
_arg = _arg.date()
return _arg | PYTHON | {
"dummy_field": ""
} |
|
d350 | train | def focusInEvent(self, event):
"""Reimplement Qt method to send focus change notification"""
self.focus_changed.emit()
return super(PageControlWidget, self).focusInEvent(event) | PYTHON | {
"dummy_field": ""
} |
|
d351 | train | def mkdir(dir, enter):
"""Create directory with template for topic of the current environment
"""
if not os.path.exists(dir):
os.makedirs(dir) | PYTHON | {
"dummy_field": ""
} |
|
d352 | train | def one_hot(x, size, dtype=np.float32):
"""Make a n+1 dim one-hot array from n dim int-categorical array."""
return np.array(x[..., np.newaxis] == np.arange(size), dtype) | PYTHON | {
"dummy_field": ""
} |
|
d353 | train | def iter_finds(regex_obj, s):
"""Generate all matches found within a string for a regex and yield each match as a string"""
if isinstance(regex_obj, str):
for m in re.finditer(regex_obj, s):
yield m.group()
else:
for m in regex_obj.finditer(s):
yield m.group() | PYTHON | {
"dummy_field": ""
} |
|
d354 | train | def a2s(a):
"""
convert 3,3 a matrix to 6 element "s" list (see Tauxe 1998)
"""
s = np.zeros((6,), 'f') # make the a matrix
for i in range(3):
s[i] = a[i][i]
s[3] = a[0][1]
s[4] = a[1][2]
s[5] = a[0][2]
return s | PYTHON | {
"dummy_field": ""
} |
|
d355 | train | def concat(cls, iterables):
"""
Similar to #itertools.chain.from_iterable().
"""
def generator():
for it in iterables:
for element in it:
yield element
return cls(generator()) | PYTHON | {
"dummy_field": ""
} |
|
d356 | train | def format_result(input):
"""From: http://stackoverflow.com/questions/13062300/convert-a-dict-to-sorted-dict-in-python
"""
items = list(iteritems(input))
return OrderedDict(sorted(items, key=lambda x: x[0])) | PYTHON | {
"dummy_field": ""
} |
|
d357 | train | def bulk_query(self, query, *multiparams):
"""Bulk insert or update."""
with self.get_connection() as conn:
conn.bulk_query(query, *multiparams) | PYTHON | {
"dummy_field": ""
} |
|
d358 | train | def Trie(S):
"""
:param S: set of words
:returns: trie containing all words from S
:complexity: linear in total word sizes from S
"""
T = None
for w in S:
T = add(T, w)
return T | PYTHON | {
"dummy_field": ""
} |
|
d359 | train | def __set__(self, instance, value):
""" Set a related object for an instance. """
self.map[id(instance)] = (weakref.ref(instance), value) | PYTHON | {
"dummy_field": ""
} |
|
d360 | train | def recarray(self):
"""Returns data as :class:`numpy.recarray`."""
return numpy.rec.fromrecords(self.records, names=self.names) | PYTHON | {
"dummy_field": ""
} |
|
d361 | train | def go_to_background():
""" Daemonize the running process. """
try:
if os.fork():
sys.exit()
except OSError as errmsg:
LOGGER.error('Fork failed: {0}'.format(errmsg))
sys.exit('Fork failed') | PYTHON | {
"dummy_field": ""
} |
|
d362 | train | def generate_unique_host_id():
"""Generate a unique ID, that is somewhat guaranteed to be unique among all
instances running at the same time."""
host = ".".join(reversed(socket.gethostname().split(".")))
pid = os.getpid()
return "%s.%d" % (host, pid) | PYTHON | {
"dummy_field": ""
} |
|
d363 | train | def compress(self, data_list):
"""
Return the cleaned_data of the form, everything should already be valid
"""
data = {}
if data_list:
return dict(
(f.name, data_list[i]) for i, f in enumerate(self.form))
return data | PYTHON | {
"dummy_field": ""
} |
|
d364 | train | def init_db():
"""
Drops and re-creates the SQL schema
"""
db.drop_all()
db.configure_mappers()
db.create_all()
db.session.commit() | PYTHON | {
"dummy_field": ""
} |
|
d365 | train | def safe_format(s, **kwargs):
"""
:type s str
"""
return string.Formatter().vformat(s, (), defaultdict(str, **kwargs)) | PYTHON | {
"dummy_field": ""
} |
|
d366 | train | def _init_unique_sets(self):
"""Initialise sets used for uniqueness checking."""
ks = dict()
for t in self._unique_checks:
key = t[0]
ks[key] = set() # empty set
return ks | PYTHON | {
"dummy_field": ""
} |
|
d367 | train | def straight_line_show(title, length=100, linestyle="=", pad=0):
"""Print a formatted straight line.
"""
print(StrTemplate.straight_line(
title=title, length=length, linestyle=linestyle, pad=pad)) | PYTHON | {
"dummy_field": ""
} |
|
d368 | train | def make_executable(script_path):
"""Make `script_path` executable.
:param script_path: The file to change
"""
status = os.stat(script_path)
os.chmod(script_path, status.st_mode | stat.S_IEXEC) | PYTHON | {
"dummy_field": ""
} |
|
d369 | train | def make_html_code( self, lines ):
""" convert a code sequence to HTML """
line = code_header + '\n'
for l in lines:
line = line + html_quote( l ) + '\n'
return line + code_footer | PYTHON | {
"dummy_field": ""
} |
|
d370 | train | def cross_product_matrix(vec):
"""Returns a 3x3 cross-product matrix from a 3-element vector."""
return np.array([[0, -vec[2], vec[1]],
[vec[2], 0, -vec[0]],
[-vec[1], vec[0], 0]]) | PYTHON | {
"dummy_field": ""
} |
|
d371 | train | def index_nearest(value, array):
"""
expects a _n.array
returns the global minimum of (value-array)^2
"""
a = (array-value)**2
return index(a.min(), a) | PYTHON | {
"dummy_field": ""
} |
|
d372 | train | def main(args=sys.argv):
"""
main entry point for the jardiff CLI
"""
parser = create_optparser(args[0])
return cli(parser.parse_args(args[1:])) | PYTHON | {
"dummy_field": ""
} |
|
d373 | train | def free(self):
"""Free the underlying C array"""
if self._ptr is None:
return
Gauged.array_free(self.ptr)
FloatArray.ALLOCATIONS -= 1
self._ptr = None | PYTHON | {
"dummy_field": ""
} |
|
d374 | train | def from_points(cls, list_of_lists):
"""
Creates a *Polygon* instance out of a list of lists, each sublist being populated with
`pyowm.utils.geo.Point` instances
:param list_of_lists: list
:type: list_of_lists: iterable_of_polygons
:returns: a *Polygon* instance
"""
result = []
for l in list_of_lists:
curve = []
for point in l:
curve.append((point.lon, point.lat))
result.append(curve)
return Polygon(result) | PYTHON | {
"dummy_field": ""
} |
|
d375 | train | def connect():
"""Connect to FTP server, login and return an ftplib.FTP instance."""
ftp_class = ftplib.FTP if not SSL else ftplib.FTP_TLS
ftp = ftp_class(timeout=TIMEOUT)
ftp.connect(HOST, PORT)
ftp.login(USER, PASSWORD)
if SSL:
ftp.prot_p() # secure data connection
return ftp | PYTHON | {
"dummy_field": ""
} |
|
d376 | train | def tmpfile(prefix, direc):
"""Returns the path to a newly created temporary file."""
return tempfile.mktemp(prefix=prefix, suffix='.pdb', dir=direc) | PYTHON | {
"dummy_field": ""
} |
|
d377 | train | def connect(host, port, username, password):
"""Connect and login to an FTP server and return ftplib.FTP object."""
# Instantiate ftplib client
session = ftplib.FTP()
# Connect to host without auth
session.connect(host, port)
# Authenticate connection
session.login(username, password)
return session | PYTHON | {
"dummy_field": ""
} |
|
d378 | train | def unique_list(lst):
"""Make a list unique, retaining order of initial appearance."""
uniq = []
for item in lst:
if item not in uniq:
uniq.append(item)
return uniq | PYTHON | {
"dummy_field": ""
} |
|
d379 | train | def connect():
"""Connect to FTP server, login and return an ftplib.FTP instance."""
ftp_class = ftplib.FTP if not SSL else ftplib.FTP_TLS
ftp = ftp_class(timeout=TIMEOUT)
ftp.connect(HOST, PORT)
ftp.login(USER, PASSWORD)
if SSL:
ftp.prot_p() # secure data connection
return ftp | PYTHON | {
"dummy_field": ""
} |
|
d380 | train | def exp_fit_fun(x, a, tau, c):
"""Function used to fit the exponential decay."""
# pylint: disable=invalid-name
return a * np.exp(-x / tau) + c | PYTHON | {
"dummy_field": ""
} |
|
d381 | train | def All(sequence):
"""
:param sequence: Any sequence whose elements can be evaluated as booleans.
:returns: true if all elements of the sequence satisfy True and x.
"""
return bool(reduce(lambda x, y: x and y, sequence, True)) | PYTHON | {
"dummy_field": ""
} |
|
d382 | train | def zero_state(self, batch_size):
""" Initial state of the network """
return torch.zeros(batch_size, self.state_dim, dtype=torch.float32) | PYTHON | {
"dummy_field": ""
} |
|
d383 | train | def _fullname(o):
"""Return the fully-qualified name of a function."""
return o.__module__ + "." + o.__name__ if o.__module__ else o.__name__ | PYTHON | {
"dummy_field": ""
} |
|
d384 | train | def create_index(config):
"""Create the root index."""
filename = pathlib.Path(config.cache_path) / "index.json"
index = {"version": __version__}
with open(filename, "w") as out:
out.write(json.dumps(index, indent=2)) | PYTHON | {
"dummy_field": ""
} |
|
d385 | train | def issorted(list_, op=operator.le):
"""
Determines if a list is sorted
Args:
list_ (list):
op (func): sorted operation (default=operator.le)
Returns:
bool : True if the list is sorted
"""
return all(op(list_[ix], list_[ix + 1]) for ix in range(len(list_) - 1)) | PYTHON | {
"dummy_field": ""
} |
|
d386 | train | def is_valid(number):
"""determines whether the card number is valid."""
n = str(number)
if not n.isdigit():
return False
return int(n[-1]) == get_check_digit(n[:-1]) | PYTHON | {
"dummy_field": ""
} |
|
d387 | train | def us2mc(string):
"""Transform an underscore_case string to a mixedCase string"""
return re.sub(r'_([a-z])', lambda m: (m.group(1).upper()), string) | PYTHON | {
"dummy_field": ""
} |
|
d388 | train | def csv2yaml(in_file, out_file=None):
"""Convert a CSV SampleSheet to YAML run_info format.
"""
if out_file is None:
out_file = "%s.yaml" % os.path.splitext(in_file)[0]
barcode_ids = _generate_barcode_ids(_read_input_csv(in_file))
lanes = _organize_lanes(_read_input_csv(in_file), barcode_ids)
with open(out_file, "w") as out_handle:
out_handle.write(yaml.safe_dump(lanes, default_flow_style=False))
return out_file | PYTHON | {
"dummy_field": ""
} |
|
d389 | train | def get_average_length_of_string(strings):
"""Computes average length of words
:param strings: list of words
:return: Average length of word on list
"""
if not strings:
return 0
return sum(len(word) for word in strings) / len(strings) | PYTHON | {
"dummy_field": ""
} |
|
d390 | train | def cumsum(inlist):
"""
Returns a list consisting of the cumulative sum of the items in the
passed list.
Usage: lcumsum(inlist)
"""
newlist = copy.deepcopy(inlist)
for i in range(1, len(newlist)):
newlist[i] = newlist[i] + newlist[i - 1]
return newlist | PYTHON | {
"dummy_field": ""
} |
|
d391 | train | def good(txt):
"""Print, emphasized 'good', the given 'txt' message"""
print("%s# %s%s%s" % (PR_GOOD_CC, get_time_stamp(), txt, PR_NC))
sys.stdout.flush() | PYTHON | {
"dummy_field": ""
} |
|
d392 | train | def move_to(self, ypos, xpos):
"""
move the cursor to the given co-ordinates. Co-ordinates are 1
based, as listed in the status area of the terminal.
"""
# the screen's co-ordinates are 1 based, but the command is 0 based
xpos -= 1
ypos -= 1
self.exec_command("MoveCursor({0}, {1})".format(ypos, xpos).encode("ascii")) | PYTHON | {
"dummy_field": ""
} |
|
d393 | train | def dict_from_object(obj: object):
"""Convert a object into dictionary with all of its readable attributes."""
# If object is a dict instance, no need to convert.
return (obj if isinstance(obj, dict)
else {attr: getattr(obj, attr)
for attr in dir(obj) if not attr.startswith('_')}) | PYTHON | {
"dummy_field": ""
} |
|
d394 | train | def ensure_hbounds(self):
"""Ensure the cursor is within horizontal screen bounds."""
self.cursor.x = min(max(0, self.cursor.x), self.columns - 1) | PYTHON | {
"dummy_field": ""
} |
|
d395 | train | def strip_spaces(s):
""" Strip excess spaces from a string """
return u" ".join([c for c in s.split(u' ') if c]) | PYTHON | {
"dummy_field": ""
} |
|
d396 | train | def scatter(self, *args, **kwargs):
"""Add a scatter plot."""
cls = _make_class(ScatterVisual,
_default_marker=kwargs.pop('marker', None),
)
return self._add_item(cls, *args, **kwargs) | PYTHON | {
"dummy_field": ""
} |
|
d397 | train | def download_file_from_bucket(self, bucket, file_path, key):
""" Download file from S3 Bucket """
with open(file_path, 'wb') as data:
self.__s3.download_fileobj(bucket, key, data)
return file_path | PYTHON | {
"dummy_field": ""
} |
|
d398 | train | def imdecode(image_path):
"""Return BGR image read by opencv"""
import os
assert os.path.exists(image_path), image_path + ' not found'
im = cv2.imread(image_path)
return im | PYTHON | {
"dummy_field": ""
} |
|
d399 | train | def ex(self, cmd):
"""Execute a normal python statement in user namespace."""
with self.builtin_trap:
exec cmd in self.user_global_ns, self.user_ns | PYTHON | {
"dummy_field": ""
} |
|
d400 | train | def split(s):
"""Uses dynamic programming to infer the location of spaces in a string without spaces."""
l = [_split(x) for x in _SPLIT_RE.split(s)]
return [item for sublist in l for item in sublist] | PYTHON | {
"dummy_field": ""
} |